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Abstract 

In “Social Choice and Individual Values” Arrow (1951) discusses two kinds of functions: 

the Social Choice Function, SCF, and the Social Welfare Function, SWF. The SCF is a function 

whose range is an alternative or set of alternatives. The SWF is a function whose range is an 

ordering of alternatives or sets of alternatives.  Arrow’s famous General Possibility Theorem, 

GPT,  states that no SWF exists which meets certain criteria. However, the SCF may well exist 

even in cases in which the SWF doesn’t because the production of an alternative or set of 

alternatives is less restrictive than the production of a set of orderings over the entire 

alternative set.  

The only role that the SCF plays in the GPT is in the specification of Condition 3, the 

Independence of Irrelevant Alternatives. In that condition Arrow specifies that the SCFs over a 

set S ⊂ T (where T contains the total number of alternatives) produce the same social result in 

two different cases when the individual preference orderings within the set S are identical in 

both cases. The set T may have different orderings in the two cases, but the alternative or set of 

alternatives produced by the SCF must be the same. This is the weakest possible requirement 

for social orderings within the set S since it only requires the top alternative or set of 

alternatives to be the same. Stronger requirements would require that the top two or more 

alternatives within the set S be ordered in the same way, and the strongest requirement would 

be that the entire social orderings within the set S in the two cases be the same. The SWF 

produces orderings over T; a generalized SCF would produce orderings over S. 

Arrow provides for tie solutions via the SCF but only for ties among alternatives. Since 

the SWF requires orderings and not alternatives, it is natural to examine ties among orderings 

and not just ties among alternatives. When ties among orderings are allowed (as demanded by 

the completeness axiom), Condition 3 can be strengthened to the maximum and solutions 

which violate the GPT can still be found. We demonstrate this for m, the number of 

alternatives, = 3 and 4. 

Introduction 

We assume a set, S, of m alternatives a,b,c ... and a relationship R which means 

“preferred or indifferent.” Therefore, xRy means x is “preferred or indifferent” to y. For the 
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present we will just consider binary orderings of this nature. Arrow (1951) sets down two 

axioms.   

 

 Axiom 1: “For all x and y, either xRy or yRx.”  

 Axiom 2: “For all x, y, and z, xRy and yRz imply xRz.” 

 

 Axiom 1 is the axiom of connection. Since xRx, R is reflexive, and since xRy or yRx 

for all alternatives in the set S, R is complete. Arrow also states (p. 13): “Note also that the word 

‘or’ in the statement of Axiom 1 does not exclude the possibility of both xRy and yRx. That word 

merely asserts that at least one of the two events must occur; both may.” Therefore we can 

restate Axiom 1 as follows:  

 

For all x and y, one of the following must be true: 1) xRy; 2) yRx; 3) both xRy and yRx. We 

will use the nomenclature {xRy, yRx} for “both xRy and yRx.” 

 

Arrow (p. 14) then goes on to make two definitions: 

 

Definition 1: “xPy is defined to mean not yRx.” 

 

Definition 2: “xIy means xRy and yRx.” 

 

where xPy is read “x is preferred to y” and xIy is read “x is indifferent to y.” 

 

A problem arises here in Arrow’s logic. According to Axiom 1, one of the following must 

be true: 1) xRy; 2) yRx; 3) both xRy and yRx. If yRx is not true, then either (1) xRy or (3) both xRy 

and yRx must be true. Thus, Definition 1 doesn’t make sense because xPy and (3) above cannot 

be true at the same time. Definition 1 conflicts with Axiom 1. Definition 2 is logically consistent 

but unnecessary. It also defines a tie as an indifference which limits the generality of the 

analysis. In addition, it stipulates a logical relationship between xRy and yRx: xIy ≡ xRy AND yRx, 
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where AND is the logical and, whereas Axiom 1 only requires that “both [events] may [occur]” 

which is heuristically a tie. 

 

Arrow states: “Axioms 1 and 2 do not exclude the possibility that for some distinct x and 

y, both xRy and yRx. A strong ordering, on the other hand, is a ranking in which no ties are 

possible.” Clearly, Arrow intends to define a tie as an indifference or he wouldn’t imply that his 

analysis includes the possibility of a tie. The statement that “a strong ordering ... is a ranking in 

which no ties are possible” is also not true. Consider the strong ranking operator P. In an 

election between two candidates, x and y, in which half the voters prefer x to y and half prefer y 

to x, the result is clearly a tie between x and y. One can also consider the result to be a tie 

between the orderings xPy and yPx or using my notation: {xPy, yPx}. 

 

Arrow further compounds the error of Definition 1 with  

 

Lemma 1 (e):  “For all x and y, either xRy or yPx.”  

 

It can not be too strongly emphasized that not xRy is yRx or {xRy, yRx}≡ xIy and not yPx. 

This makes sense heuristically since if y is not “preferred or indifferent to” x, then any of the 

following may be true: 1) x may be “preferred or indifferent” to y or 2) x may be indifferent to y 

or 3) x may be preferred to y. There is no way to know that xPy when the specification is xRy or 

yRx or xIy. If we could know that y is not preferred to x AND y is not indifferent to x, then we 

would know that xPy. But we only know that y is not “preferred or indifferent” to x. This is one 

of the problems of Arrow’s analysis that leads to the erroneous conclusion that social choice is 

impossible. 

 

The Social Choice Function 

The choice function, C(S), is defined by Arrow (p. 15) as follows:   

 

Definition 3: “C(S) is the set of all alternatives in S such that, for every y in S, sRy.” 



 
5 

  

As such it can be used to specify ties among alternatives if the set, C(S), contains more 

than one element. Sen (1970, p. 48) says, "Arrow's impossibility theorem is precisely a result of 

demanding social orderings as opposed to choice functions." In other words, if the solutions 

required were simply alternatives, Arrow’s Impossibility Theorem would not apply. Since Arrow 

only uses it in his specification of the Condition of the Independence of Irrelevant Alternatives, 

it would have been more natural (and certainly stronger) to define C(S) as an ordering over a 

subset instead of the highest ranking alternative or set of alternatives in a subset. Why, if 

orderings are required in the solution, should only top-ranking alternatives be required in one 

of the conditions? And why, if orderings are required, should ties only be allowed among 

alternatives and not among orderings? We define an ordering function herein which 

strengthens the Condition of Independence of Irrelevant Alternatives and allows for ties among 

orderings as well as ties among alternatives. 

 

Arrow (p.15) makes the following incorrect statement: “Each element of C(S) is to be 

preferred to all elements of S not in C(S) and indifferent to all elements of C(S); and, therefore, 

if x belongs to C(S), xRy for all y in S.” Assuming we have specified xRy, yRx or {xRy, yRx} for all x 

and y in S, we don’t know whether one element is preferred to another element—only that one 

element is “preferred or indifferent” to another element. Therefore, we can’t know that the 

elements of C(S) are “preferred to all elements of S not in C(S),” only that the elements of C(S) 

are “preferred or indifferent” to the elements not in C(S). For example, let’s assume the 

following set S and the following relationships: 

   S = {x,y,z} 

   xRy, yRz, xRz 

Then, clearly C(S) = x. y and z are not in C(S), but x is not preferred to y and z but it is  

“preferred or indifferent” to y and z and for every element, w, of S xRw which is all Definition 3 

requires. 
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For x and y in C(S), xRy and yRx or {xRy, yRx}. For x in C(S) and z not in C(S), xRz and not 

zRx, not {xRz, zRx}. Arrow’s definition of C(S) makes sense. However, it would be clearer if the 

following statement would be appended: For y in C(S), xRy and yRx. For y not in C(S), xRy. 

 

Clearly, for x and y in C(S), xIy according to Definition 2 and this is the basis for Arrow’s 

claim that he provides for ties. However, note that he has totally identified a tie as an 

indifference. 

 

If the relationships among the alternatives in S are transitive according to Axiom 2 and 

either xRy or yRx but not both, then C(S) can contain only one element since the elements can 

be ordered, for example, as follows: xRyRz. If ties are possible, then, for example, we might 

have the following relationship: 

 

   {xRy, yRx}, yRz, xRz 

 

Here, according to Arrow’s Definition 2 we could write xIy and  

C(S) = {x,y}. Then the elements of C(S) are indifferent to each other but are “preferred or 

indifferent” (not “preferred” as Arrow states) to the element, z, not in C(S). 

 

If the relationships are intransitive, then C(S) might be empty. For example, if xRy, yRz 

and zRx, then C(S) is empty since there is no element that is “preferred or indifferent” to every 

other element. 

 

Consider the example: {xRy, yRx}, {yRz, zRy}, xRz or xIy, yRz, xRz according to Definition 

2. What is C(S)? Clearly, C(S) is {x,y} since xRy, xRz and yRx, yRz. This does not violate Arrow’s 

Axiom 2 since xRy and yRz imply xRz. However, this does violate Arrow’s Lemma 1(d): If xIy and 

yIz, then xIz, since xIy and yIz but xRz. Clearly, Arrow’s definition of transitivity is incomplete 

because it doesn’t provide for the tie case. 
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Arrow goes on to compound the confusion over xPy and not yRx. He states: “Conversely, 

suppose C[x,y] contains the single element x. Since y does not belong to C[x,y]), not yRx; by 

Definition 1, xPy.” But not yRx is xRy or {xRy, yRx} by Axiom 1, not xPy. The root of the problem 

is that xPy implies xRy but not vice versa. Not yRx does not imply xPy, but it implies either xRy 

or {xRy, yRx}. Similarly, xIy implies xRy, but xRy does not imply xIy. 

 

Consider xRyRz. Arrow would have us believe that since not yRx, xPy and since not zRy, 

yPz and, therefore, xPz. However, if x is preferred or indifferent to y and y is preferred or 

indifferent to z, then there is the possibility that x is indifferent to y and y is indifferent to z and, 

therefore, x is indifferent to z.   

 

Arrow’s Lemma 2 is also wrong. 

 

LEMMA 2: A necessary and sufficient condition that xPy is that x be the sole element of C([x,y]). 

 

However, if x is the sole element of C([x,y]), then xRy by Definition 3 and if xRy, C([x,y]) is 

x by definition. Therefore, xPy in Lemma 2 should be replaced by xRy. 

 

Transitivity 

So far we have been considering the relationship between just two alternatives: xRy. 

When there are three or more alternatives, then Arrow’s Axiom 2, the axiom of transitivity 

comes into effect. Transitivity limits the total number of logical possibilities to just those that 

heuristically and intuitively make sense. If x is “preferred or indifferent” to y and y is “preferred 

or indifferent” to z, then it makes sense that x should be “preferred or indifferent” to z. To say 

that z is “preferred or indifferent” to x in the last sentence would not make sense although xRy, 

yRz and zRx is a logical possibility. Thus transitivity imposes a rational limitation on the total 

number of logical possibilities. Another logical possibility, if xRy and zRy, then xRz or zRx, need 

not be stated since the implication does not imply a specific logical possibility. Either possibility 

is intuitively appropriate. 
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From Axiom 1 we know there are three possibilities: xRy, yRx or {xRy, yRx}. Arrow’s 

Axiom 2, while correct insofar as it goes, does not take into account the tie case: {xRy, yRx}. 

Heuristically, Axiom 2 makes sense as long as there are no ties involved. Therefore, it is fair to 

ask how the tie case affects the axiom of transitivity. There are 33 logical combinations of xRy, 

yRx and {xRy, yRx}. There are only the following cases involving ties. The relationships which are 

marked transitive are those which make intuitive sense and are non-trivial in that only one of 

the two possible logical implications makes sense. The logic is Relationship 1 and Relationship 2 

imply Relationship 3.
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Case Relationship 1 Relationship 2 Relationship 3 Transitive? 

 1 {xRy, yRx} yRz xRz Yes 

 2 {xRy, yRx} yRz zRx No 

 3 {xRy, yRx} zRy xRz No 

    4 {xRy, yRx} zRy zRx Yes 

 5  xRy  {yRz, zRy} xRz Yes 

 6  xRy  {yRz, zRy} zRx No 

 7  yRx  {yRz, zRy} xRz No 

 8  yRx  {yRz, zRy} zRx Yes 

 9  xRy  yRz {xRz, zRx} No 

 10  xRy  zRy {xRz, zRx} Trivial 

 11  yRx  yRz {xRz, zRx} Trivial 

 12  yRx zRy {xRz, zRx} No 

 13 {xRy, yRx} {yRz, zRy} xRz No 

 14 {xRy, yRx} {yRz, zRy} zRx No 

 15 {xRy, yRx} yRz {xRz, zRx} No 

 16 {xRy, yRx} zRy {xRz, zRx} No 

 17  xRy {yRz, zRy} {xRz, zRx} No 

 18  yRx {yRz, zRy} {xRz, zRx} No 

 19 {xRy, yRx} {yRz, zRy} {xRz, zRx} Yes 

 

There are 5 non-trivial relationships from the above table: 

 

1) If {xRy, yRx} and yRz, then xRz. 

2) If {xRy, yRx} and zRy, then zRx. 

3) If xRy and {yRz, zRy}, then xRz. 

4) If yRx and {yRz, zRy}, then zRx. 
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5) If {xRy, yRx} and {yRz, zRy}, then {xRz, zRx}. 

 

These 5 relationships along with the relationship from Axiom 2 define transitivity when 

ties are taken into consideration. Since  

xIy ≡ {xRy, yRx} by Arrow, we can write the following transitive relationships. 

 

1) xRyRz 

2) xIyRz 

3) zRxIy 

4) xRyIz 

5) yRxIz 

6) xIyIz 

 

Any permutation of x,y and z is allowed in the above relationships. These taken together 

with the trivial relationships are the only relationships allowed by a generalized version of 

Axiom 2. Instead of Arrow’s definition of indifference given above we can define a tie operator, 

T, such that xTy ≡ {xRy, yRx}. This would be a more general relationship way of defining {xRy, 

yRx} than as an indifference. 

 

A generalized version of Axiom 2, then, limits the relationships among three alternatives 

to the ones given above which can be expressed as alternative operator alternative operator 

alternative operator. Any relationship among three variables that cannot be expressed in this 

way is intransitive. 

 

For three alternatives, Axiom 1 needs to be generalized also. There are six possible 

outcomes not involving ties: xRyRz, xRzRy, yRxRz, yRzRx, zRxRy, zRyRx. These correspond to xRy 

and yRx in the binary case. In order to be complete, we need to include all combinations of 

these outcomes as possible outcomes similar to the binary case. 
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Axiom 1 (generalized): For all x, y, z, either xRyRz or xRzRy or yRxRz or yRzRx or zRxRy or 

zRyRx or combinations of the type {xRyRz, xRzRy} or combinations of the type {xRyRz, 

xRzRy, yRxRz} or   combinations of the type {xRyRz, xRzRy, yRxRz, yRzRx} or  

combinations of the type {xRyRz, xRzRy, yRxRz, yRzRx, zRxRy} or {xRyRz, xRzRy, yRxRz, yRzRx, 

zRxRy, zRyRx} where  is the binomial coefficient  

 

The Social Welfare Function (SWF) 

Arrow defines a SWF as follows:  

 

Definition 4: By a social welfare function will be meant a process or rule which, for each 

set of individual orderings R1, ..., Rn for alternative social states (one ordering for each 

individual), states a corresponding social ordering of alternative social states, R. 

 

Therefore, the scenario is that each individual voter/consumer specifies either xRiy or 

yRix or possibly, for the sake of completeness, {xRiy, yRix}. There is absolutely no way to 

determine whether or not a voter prefers x to y or y to x because his specification is that he 

“prefers or is indifferent” between x and y. We cannot ever conclude that not yRix is xPiy 

because we never know particular preference and indifference information—only “preference 

or indifference” information. We know from Axiom 1 that either xRiy or yRix or both which we 

write {xRiy, yRix}. Either we have xRiy or yRix or a tie. Arrow goes on to define a tie as an 

indifference. In any case, if yRix is not true, then xRiy or {xRiy, yRix} must be true. We can never 

get preference information out of the individual orderings R1, ..., Rn since it’s not called for in 

Definition 4. 

 

Even with a formal logical consideration, preference information is not available. Let’s 

define xRy formally as xPy OR xIy where OR is logical or. Then if each individual specifies 
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according to Axiom 1 either 1) xRiy, 2) yRix or 3) {xRiy, yRix}≡ xIiy, one of the above three must 

be true and the other two false. Therefore, if NOT yRix is true where NOT is the logical not, then 

either xRiy or xIiy must be true. If individual i specifies xRiy, one cannot conclude xPiy; one can 

only conclude that i prefers x to y or is indifferent between x and y. We can only conclude that 

xPiy if we know that xRiy AND {NOT xIiy} where AND is the logical and. But by Definition 4 and 

Axiom 1, we do not elicit that information from individual i. We only elicit 1), 2) or 3) above and 

not {(2) AND NOT (3)}.  

 

Even without ties, NOT yRix ⇒ xPiy is not true. If we assume that each individual can 

only specify xRiy or yRix and cannot specify  {xRiy, yRix}≡ xIiy, we still cannot extract preference 

information. If y is not preferred or indifferent to x, y can still be indifferent to x. Therefore, 

NOT yRix does not imply xPiy. The truth table is the following: 

 

 yRix NOT yRix  yPix  xPiy xIiy  

 0  1 0 0 1 

 0 1  0 1 0 

  

Considering the SCF and Definition 4, if the SWF were xRyRz, the SCF would be x. If the 

SWF were {xRy, yRx}Rz or in Arrow’s notation xIyRz, the SCF would be [x,y]. The SCF truncates 

the SWF and yields the top alternative or set of alternatives in case the top alternatives are 

tied. With three alternatives it is possible in accordance with generalized Axiom 1 to have 

solutions of the form {xRzRy, zRyRx} or {zRyRx, yRxRz, yRzRx}. This generalizes directly from the 

binary case, {xRy, yRx}. The most general tie with three alternatives would be {xRyRz, xRzRy, 

yRxRz, yRzRx, zRxRy, zRyRx}. 

 

With generalized Axiom 1, a tie refers to orderings and not to alternatives. The choice 

function C(S) would specify a tie between the alternatives x and y if xIyRz were the social 

ordering, for example. We are considering here ties among the orderings themselves and not 

just among the "top slot" of those orderings. 
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Let us assume there are six voter/consumers and that each specifies a different 

ordering. There is then one specification for each possible individual ordering. The common 

sense, heuristic solution is a tie among all the possible orderings. Similarly, there are 24  

possible non-tie orderings for 4 alternatives, and, for the case of 24 voter/consumers, each 

specifying a different ordering, common sense would dictate a tie among all the possible social 

orderings. A similar case can be made for m=5, 6, ... . These are the broadest conceivable tie 

sets, and will be called maximal tie sets. Tie sets involving less than the total number of 

orderings are also possible and demanded by the completeness requirement. 

 

Independence of Irrelevant Alternatives 

Arrow postulates five conditions with which, in addition to Axioms 1 and 2, a SWF 

should be compliant. The only one of these that involves the SCF is Condition 3, the 

Independence of Irrelevant Alternatives. 

 

Condition 3: “Let R1, ..., Rn and R'1, ..., R'n be two sets of individual orderings and let C(S) 

and C'(S) be the corresponding social choice functions. If, for all individuals i and x and y in a 

given environment S, xRiy if and only if xR'iy, then C(S) and C'(S) are the same.” 

 

Arrow postulates that only the top slot of the orderings in environment S be the same 

since C(S) only selects the top slot. It might be asked why it shouldn’t be required that the top 

two slots of the orderings be the same or the top three slots etc. Therefore, for a general SWF 

solution such as  

   

   x1Rx2R ... xjRxj+1R ... xm-1Rxm 

 

we can generalize the SCF as follows: 

 

  C1 = x1 
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  C2 = x1Rx2 

 . 

 . 

 . 

 Cj = x1Rx2R ... Rxj 

 

Cj is the ordering of the top j alternatives. In particular, if there are s alternatives in the 

environment S, then Cs would be the ordering of all those alternatives. C1 = C(S), Arrow’s social 

choice function. 

 

As an example, let us assume that R corresponding to R1, ..., Rn is uRvRwRxRyRz and R' 

corresponding to R'1, ..., R'n is uRvRyRxRwRz and that S = {v, w, x, y}. Also all individuals vote 

exactly the same for v, w, x and y in the two sets of individual orderings. Then Arrow’s 

Condition 3 is met since C(S) = C'(S) = v. However, C2(S) = vRw ≠ C'2(S) = vRy. Similarly, C3(S) ≠ 

C'3(S) and C4(S) ≠ C'4(S). Arrow’s Condition 3 is the weakest possible requirement! 

 

Consider another example. Let us assume that R corresponding to R1, ..., Rn is 

uRvRwRxRyRz and R' corresponding to R'1, ..., R'n is zRvRwRxRyRu and that S = {v, w, x, y}. Also 

all individuals vote exactly the same for v, w, x and y in the two sets of individual orderings. 

Then C(S) = C'(S) = v. C2(S) = C'2(S) = vRw. C3(S) = C'3(S) = vRwRx and C4(S) = C'4(S) = vRwRxRy. 

 

When ties are considered, Arrow’s social choice function is inadequate. Consider the 

following example. R = {xRyRz, yRzRx, zRxRy}. R' = {zRxRy, yRzRx, xRzRy}. Let S = {x,y} and 

assume that all individuals vote exactly the same for x and y in the two cases. In S we have R = 

{xRy, yRx, xRy} and R' = {xRy, yRx, xRy}, and C(S) = C'(S) since R and R' are identical. However, 

there is no way of determining what C(S) is unless an additional rule is laid down for combining 

terms in the expression  {xRy, yRx, xRy}. Let us use the following rule: For m = 3 and S = {x,y}, 

let C2(S) = the maximum over R of xRy and yRx. In the tie expression above, {xRy, yRx, xRy}, 

there are 2 xRys and 1 yRx. Therefore, C2(S) = xRy. 
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The generalized SCF then consists of orderings and a rule for selecting these orderings 

when the SWF is singular or a tie. 

 

The Ternary Case — n odd 

We now proceed to demonstrate solutions which are social orderings for a specific SWF 

for the case m = 3 which satisfy a strengthened version of Arrow’s conditions. Let us assume 

alternatives x, y and z and n (odd) voter/consumers. As a consequence of Arrow’s Condition 3, 

the independence of irrelevant alternatives, we know that “knowing the social choices made in 

pairwise comparisons determines the entire social ordering.” Accordingly, we consider the 

social choices of the alternatives two by two. Our SWF is as follows. If N(x,y) > N(y,x), then xRy. 

If N(y,x) > N(x,y), then yRx. At the ternary level we have 8 cases:
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  Case 1: xRy, xRz, yRz 

  Case 2: xRy, xRz, zRy 

  Case 3: xRy, zRx, yRz 

  Case 4: xRy, zRx, zRy 

  Case 5: yRx, xRz, yRz 

  Case 6: yRx, xRz, zRy 

  Case 7: yRx, zRx, yRz 

  Case 8: yRx, zRx, zRy 

 

According to the Condorcet (1785) method for determining the outcome of an election, we 

consider each of the alternatives in pairs, determine the winner for each pair and then 

determine the final social ordering by combining these results. We use the Condorcet method 

in our SWF for the above cases in which it actually produces a result. Therefore, we have the 

following: 

 

  Case   Social Ordering 

  1    xRyRz 

  2    xRzRy 

  4    zRxRy 

  5    yRxRz 

  7    yRzRx 

  8    zRyRx 

 

This leaves only cases 3 and 6. Consider the solution {xRyRz, yRzRx, zRxRy} for Case 3. We call a 

reduced ordering or reduced solution an ordering with one or more alternatives removed.  If 

we consider  {xRyRz, yRzRx, zRxRy} and remove z, we get {xRy, yRx, xRy}. Combining terms we 

have {2xRy, yRx}. If we choose the most numerous of xRy and yRx as the solution, we get xRy by 

2 to 1 which is in accordance with the binary result. 
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Likewise, if we reduce {xRyRz, yRzRx, zRxRy} by y, we get {xRz, zRx, zRx} or {xRz, 2zRx}. 

2zRx > xRz and we take zRx as the reduced solution which agrees with the known binary 

solution. Similarly, if we remove x from the social solution, we have {yRz, yRz, zRy} which yields 

yRz. Accordingly, our SWF algorithm is as follows: 

 

 1) Choose the Condorcet solution if it exists. 

 2) If the Condorcet solution doesn’t exist, construct a solution   

 such that, when the solution is reduced by any single  alternative,  the 

most numerous of the remaining binary 

 relationships is the same as the known binary solution. 

 

Notice that our algorithm will always produce consistent results if the ternary solution is 

generated from the binary solution in such a way that there is a 2 to 1 ratio between the 

correct binary solution and the incorrect binary solution and then we take the larger of the two 

as our reduced solution. We construct our solutions in this manner in order to be compliant 

with Arrow’s Condition 3. Satisfying the other Conditions is then trivial and is easily shown. 

Whether or not such a solution always exists for m > 3 will be answered affirmatively elsewhere 

(Lawrence, 1998). Here all we need to show is the existence of a solution for Case 6. Consider 

the solution {yRxRz, xRzRy, zRyRx}. Reduction by z yields yRx; by y, xRz; by x, zRy. These all agree 

with the known binary cases and are consistent with the above definition. 

 

Therefore, we have demonstrated a consistent algorithm for the SWF which yields the 

same social orderings when reduced from the ternary case to the binary case as those 

produced at the binary level directly from the domain. There is complete consistency of social 

orderings and not just of alternatives produced by the choice function. The choice function only 

produces the top position in an ordering.  We demand consistency over all orderings which 

can be produced by reducing a social ordering and this strengthens Arrow's Condition 3. 
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Arrow (1951, p. 26) states that “...suppose that an election system has been devised 

whereby each individual lists all the candidates in order of his preference and then, by a 

preassigned procedure, the winning candidate is derived from these lists. ...Suppose an election 

is held, with a certain number of candidates in the field, each individual filing his list of 

preferences, and then one of the candidates dies. Surely the social choice should be made by 

taking each of the individual's preference lists, blotting out completely the dead candidate's 

name, and considering only the orderings of the remaining names in going through the 

procedure of determining a winner.” This is precisely what we have done in choosing our SWF. 

Notice that it is completely consistent with the solutions for those cases determined by the 

Condorcet method and yields consistent results when the “dead” candidate is “blotted out” of 

the social ordering as well as when the “dead” candidate is blotted out of the individual 

orderings. 

 

Let us examine the result produced by the SCF function for the above cases. Let S ={x,y} 

 

Case Social Ordering   C1  C2 

1  xRyRz   x  xRy 

2  xRzRy   x  xRy 

3 {xRyRz, yRzRx, zRxRy}  x  xRy 

4  zRxRy   z  xRy 

5  yRxRz   y  yRx 

6 {yRxRz, xRzRy, zRyRx}  y  yRx 

7  yRzRx   y  yRx 

8  zRyRx   y  yRx 

 

Now let’s consider Arrow’s Condition 3 and let Ri  be such as to produce xRy, yRz, xRz (Case 1) 

and R'i be such as to produce xRy, yRz zRx (Case 3). S = {x,y}. Then C1(S) should equal C'1(S).  It 

does and also C2(S) = C'2(S) which is more than Arrow requires. Similarly, all the above cases 

satisfy not only Arrow’s Condition 3 which requires C1 but a stronger condition requiring C2. 
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Examining the above relationships we notice that, regardless of the relationship between x and 

z and y and z, as long as xRy, C1 = x and C2 = xRy. 

 

 

The Ternary Case — n even 

When n is even we have a total of 27 cases. We have already considered the first 8 cases 

above. For convenience we define {xRy, yRx} as xTy instead of xIy since it is more general. In 

addition there is one more tie possibility, a three way tie: N(x,y) = N(y,x) = N(y,z) = N(z,y) = 

N(x,z) = N(z,x). We write this as {xRy, yRx, yRz, zRy, xRz, zRx} and define this as xTyTz. Solutions 

for the remaining cases are shown below. We also note the following transitivity requirements: 

 

  1) If xRy and yTz, then xRz; 

  2) If xTy and yRz, then xRz; 

  3) If xTy and yTz, then xTz. 
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Case Binary Solutions Ternary Solution 

 9: xRy, xRz, yTz   xRyTz 

 10: xRy, zRx, yTz   {zRxRy, xRyTz, yTzRx} 

 11: yRx, xRz, yTz   {yRxRz, xRyTz, yTzRx} 

 12: yRx, zRx, yTz   yTzRx 

 13: xRy, xTz, yRz   {xRyRz, yRxTz, xTzRy} 

 14: xRy, xTz, zRy   xTzRy 

 15: yRx, xTz, yRz   yRxTz 

 16: yRx, xTz, zRy   {zRyRx, yRxTz, xTzRy} 

 17: xTy, xRz, yRz   xTyRz 

 18: xTy, xRz, zRy   {xRzRy, xTyRz, zRxTy} 

 19: xTy, zRx, yRz   {yRzRx, xTyRz, zRxTy} 

 20: xTy, zRx, zRy   zRxTy 

 21: xRy, xTz, yTz   {xRyTz, xTzRy, xTyTz} 

 22: yRx, xTz, yTz   {yRxTz, yTzRx, xTyTz} 

 23: xTy, xRz, yTz   {xRyTz, xTyRz, xTyTz} 

 24: xTy, zRx, yTz   {zRxTy, yTzRx, xTyTz} 

 25: xTy, xTz, yRz   {yRxTz, xTyRz, xTyTz} 

 26: xTy, xTz, zRy   {zRxTy, xTzRy, xTyTz} 

 27: xTy, xTz, yTz   xTyTz 

 

Now, if xRy and S = {x,y}, we require C2 = C'2 regardless of the relationship between x and z and 

y and z. An examination of the above cases shows this to be true. 

 

m = 4 — n odd 

For m = 4 and no ties considered (n odd), we have the following solutions. (Note that 

abcd ≡ aRbRcRd.) The generalized SCF amounts to starting with the result produced by the SWF 

and reducing the solution down to the set S where S⊂T according to the above algorithm. This 

is completely in accordance with starting with the set S and generating a result according to the 
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above SWF. In other words we can reduce down to S or expand up to S with the same results 

using the algorithm presented here. The results produced are identical and Cj(S) = C'j(S) in every 

case for 1 ≤ j≤ 3.  

 

Case 1: aRb, aRc, aRd, bRc, bRd , cRd  Solution: abcd 

Case 2: aRb, aRc, aRd, bRc, bRd, dRc  Solution: abdc 

Case 3: aRb, aRc, aRd, bRc, dRb, cRd  Solution: abcd, acdb, adbc 

Case 4: aRb, aRc, aRd, bRc, dRb, dRc  Solution: adbc 

Case 5: aRb, aRc, aRd, cRb, bRd , cRd  Solution: acbd 

Case 6: aRb, aRc, aRd, cRb, bRd , cRd  Solution: abdc, acbd, adcb 

Case 7: aRb, aRc, aRd, cRb, dRb , cRd  Solution: acdb 

Case 8: aRb, aRc, aRd, cRb, dRb , dRc  Solution: adcb 

Case 9: aRb, aRc, dRa, bRc, bRd , cRd  Solution: abcd, bcda, dabc 

Case 10:  aRb, aRc, dRa, bRc, bRd , dRc  Solution: abdc, bdac, dabc 

Case 11:  aRb, aRc, dRa, bRc, dRb, cRd  Solution: abcd, dabc, cdab 

Case 12:  aRb, aRc, dRa, bRc, dRb, dRc  Solution: dabc 

Case 13:  aRb, aRc, dRa, cRb, bRd , cRd  Solution: acbd, cbda, dacb 

Case 14:  aRb, aRc, dRa, cRb, bRd , dRc  Solution: acbd, bdac, dacb 

Case 15:  aRb, aRc, dRa, cRb, dRb , cRd  Solution: acdb, cdab, dacb 

Case 16:  aRb, aRc, dRa, cRb, dRb , dRc  Solution: dacb 

Case 17:  aRb, cRa, aRd, bRc, bRd , cRd  Solution: abcd, bcad, cabd 

Case 18:  aRb, cRa, aRd, bRc, bRd , dRc  Solution: abdc, bdca, cabd 

Case 19:  aRb, cRa, aRd, bRc, dRb , cRd  Solution: adbc, bcad, cadb 

Case 20:  aRb, cRa, aRd, bRc, dRb , dRc  Solution: adbc, dbca, cadb 

Case 21:  aRb, cRa, aRd, cRb, bRd , cRd  Solution: cabd 

Case 22:  aRb, cRa, aRd, cRb, bRd , dRc  Solution: cabd, abdc, dcab 

Case 23:  aRb, cRa, aRd, cRb, dRb , cRd  Solution: cadb 

Case 24:  aRb, cRa, aRd, cRb, dRb , dRc  Solution: cadb, dcab, adcb 

Case 25:  aRb, cRa, dRa, bRc, bRd , cRd  Solution: abcd, bcda, cdab 
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Case 26:  aRb, cRa, dRa, bRc, bRd , dRc  Solution: abdc, bdca, dcab 

Case 27:  aRb, cRa, dRa, bRc, dRb , cRd  Solution: cdab, bcda, dabc 

Case 28:  aRb, cRa, dRa, bRc, dRb , dRc  Solution: dcab, dbca, dabc 

Case 29:  aRb, cRa, dRa, cRb, bRd , cRd  Solution: cabd, cbda, cdab 

Case 30:  aRb, cRa, dRa, cRb, bRd , dRc  Solution: cabd, bdca, dcab 

Case 31:  aRb, cRa, dRa, cRb, dRb , cRd  Solution: cdab 

Case 32:  aRb, cRa, dRa, cRb, dRb , dRc  Solution: dcab 

Case 33:  bRa, aRc, aRd, bRc, bRd , cRd  Solution: bacd 

Case 34:  bRa, aRc, aRd, bRc, bRd , dRc  Solution: badc 

Case 35:  bRa, aRc, aRd, bRc, dRb , cRd  Solution: acdb, bacd, dbac 

Case 36:  bRa, aRc, aRd, bRc, dRb , dRc  Solution: adbc, badc, dbac 

Case 37:  bRa, aRc, aRd, cRb, bRd , cRd  Solution: acbd, bacd, cbad 

Case 38:  bRa, aRc, aRd, cRb, bRd , dRc  Solution: adcb, badc, cbad 

Case 39:  bRa, aRc, aRd, cRb, dRb , cRd  Solution: acdb, bacd, cdba 

Case 40:  bRa, aRc, aRd, cRb, dRb , dRc  Solution: adcb, badc, dcba 

Case 41:  bRa, aRc, dRa, bRc, bRd , cRd  Solution: bacd, bcda, bdac 

Case 42:  bRa, aRc, dRa, bRc, bRd , dRc  Solution: bdac 

Case 43:  bRa, aRc, dRa, bRc, dRb , cRd  Solution: bacd, cdba, dbac 

Case 44:  bRa, aRc, dRa, bRc, dRb , dRc  Solution: dbac 

Case 45:  bRa, aRc, dRa, cRb, bRd , cRd  Solution: acbd, bdac, cbda 

Case 46:  bRa, aRc, dRa, cRb, bRd , dRc  Solution: dacb, bdac, cbda 

Case 47:  bRa, aRc, dRa, cRb, dRb , cRd  Solution: acdb, dbac, cdba 

Case 48:  bRa, aRc, dRa, cRb, dRb , dRc  Solution: dacb, dbac, dcba 

Case 49:  bRa, cRa, aRd, bRc, bRd , cRd  Solution: bcad 

Case 50:  bRa, cRa, aRd, bRc, bRd , dRc  Solution: badc, bcad, bdca 

Case 51:  bRa, cRa, aRd, bRc, dRb , cRd  Solution: cadb, bcad, dbca 

Case 52:  bRa, cRa, aRd, bRc, dRb , dRc  Solution: adbc, bcad, dbca 

Case 53:  bRa, cRa, aRd, cRb, bRd , cRd  Solution: cbad 

Case 54:  bRa, cRa, aRd, cRb, bRd , dRc  Solution: badc, cbad, dcba 
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Case 55:  bRa, cRa, aRd, cRb, dRb , cRd  Solution: cadb, cbad, cdba 

Case 56:  bRa, cRa, aRd, cRb, dRb , dRc  Solution: adcb, cbad, dcba 

Case 57:  bRa, cRa, dRa, bRc, bRd , cRd  Solution: bcda 

Case 58:  bRa, cRa, dRa, bRc, bRd , dRc  Solution: bdca 

Case 59:  bRa, cRa, dRa, bRc, dRb , cRd  Solution: bcda, cdba, dbca 

Case 60:  bRa, cRa, dRa, bRc, dRb , dRc  Solution: dbca 

Case 61: bRa, cRa, dRa, cRb, bRd , cRd  Solution: cbda 

Case 62:  bRa, cRa, dRa, cRb, bRd , dRc  Solution: bdca, dcba, cbda 

Case 63:  bRa, cRa, dRa, cRb, dRb , cRd  Solution: cdba 

Case 64:  bRa, cRa, dRa, cRb, dRb , dRc  Solution: dcba 

 

Let S1 = {a}, S2 = {a, b}, S3 = {a, b, c}. Then C1(S1) = C'1(S1); C2(S2) = C'2(S2); C3(S3) = C'3(S3) for every 

possible case above by inspection. For example, consider Cases 59 and 60 as R and R', 

respectively. C1(S1) = C'1(S1) = a; C2(S2) = C'2(S2) = bRa; C3(S3) = C'3(S3) = bRcRa. 

 

Conclusion 

A generalized SCF was developed in which orderings can be extracted from a SWF for a 

set S⊂T where the set T contains all m alternatives under consideration. The relationship 

between the SCF and the SWF was examined, and it was shown that solutions produced by a 

particular SWF for S are the same as the solutions produced by the highest order, generalized 

SCF for S. In other words, using the SWF and generating solutions for S⊂T, yields the same 

results as taking the solutions produced by the SWF for the set T and applying the generalized 

SCF. 

 

Arrow claims to provide for tie solutions using the SCF. However, the SCF can only 

produce ties among alternatives. Since the purpose of the SWF is to produce orderings, it would 

seem natural to explore the possibility of ties among orderings. In his Axiom 1 Arrow allows for 

ties between orderings for two alternatives. We have generalized this to allow for ties among 

orderings of three or more alternatives. 
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We have also generalized the axioms of transitivity and completeness to take into 

account tie solutions. If a solution produced by a SWF is a tie, then further measures can be 

taken to winnow the solution set to a singular solution at least in some cases. This is the subject 

of another paper and was not considered here. 

 

We have pointed out several errors in Arrow’s logic—in particular involving his assertion 

that NOT yRx ⇒ xPy which is untrue. The logical errors throw into question Arrow’s entire 

analysis which, therefore, should not be considered cast in concrete. 

 

We have shown that, when ties are properly considered, a SWF exists for m = 3 which 
complies with a strengthened version of Arrow’s Condition 3, the Independence of Irrelevant 
Alternatives. Elsewhere (Lawrence 1998), it has been shown that this result complies with 
Arrow’s other conditions and generalizes for any value of m and n. Therefore, social choice or, 
more precisely, a SWF does exist when ties among orderings are considered correctly.
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