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Abstract

In “Social Choice and Individual Values” Arrow (1951) discusses two kinds of functions:
the Social Choice Function, SCF, and the Social Welfare Function, SWF. The SCF is a function
whose range is an alternative or set of alternatives. The SWF is a function whose range is an
ordering of alternatives or sets of alternatives. Arrow’s famous General Possibility Theorem,
GPT, states that no SWF exists which meets certain criteria. However, the SCF may well exist
even in cases in which the SWF doesn’t because the production of an alternative or set of
alternatives is less restrictive than the production of a set of orderings over the entire
alternative set.

The only role that the SCF plays in the GPT is in the specification of Condition 3, the
Independence of Irrelevant Alternatives. In that condition Arrow specifies that the SCFs over a
set S T (where T contains the total number of alternatives) produce the same social result in
two different cases when the individual preference orderings within the set S are identical in
both cases. The set T may have different orderings in the two cases, but the alternative or set of
alternatives produced by the SCF must be the same. This is the weakest possible requirement
for social orderings within the set S since it only requires the top alternative or set of
alternatives to be the same. Stronger requirements would require that the top two or more
alternatives within the set S be ordered in the same way, and the strongest requirement would
be that the entire social orderings within the set S in the two cases be the same. The SWF
produces orderings over T; a generalized SCF would produce orderings over S.

Arrow provides for tie solutions via the SCF but only for ties among alternatives. Since
the SWF requires orderings and not alternatives, it is natural to examine ties among orderings
and not just ties among alternatives. When ties among orderings are allowed (as demanded by
the completeness axiom), Condition 3 can be strengthened to the maximum and solutions
which violate the GPT can still be found. We demonstrate this for m, the number of

alternatives, = 3 and 4.
Introduction

We assume a set, S, of m alternatives a,b,c ... and a relationship R which means

“preferred or indifferent.” Therefore, xRy means x is “preferred or indifferent” to y. For the



present we will just consider binary orderings of this nature. Arrow (1951) sets down two

axioms.

Axiom 1: “For all x and y, either xRy or yRx.”

Axiom 2: “For all x, y, and z, xRy and yRz imply xRz.”

Axiom 1 is the axiom of connection. Since xRx, R is reflexive, and since xRy or yRx
for all alternatives in the set S, R is complete. Arrow also states (p. 13): “Note also that the word
‘or’ in the statement of Axiom 1 does not exclude the possibility of both xRy and yRx. That word
merely asserts that at least one of the two events must occur; both may.” Therefore we can

restate Axiom 1 as follows:

For all x and y, one of the following must be true: 1) xRy; 2) yRx; 3) both xRy and yRx. We

will use the nomenclature {xRy, yRx} for “both xRy and yRx.”

Arrow (p. 14) then goes on to make two definitions:

Definition 1: “xPy is defined to mean not yRx.”

Definition 2: “xly means xRy and yRx.”

where xPy is read “x is preferred to y” and xly is read “x is indifferent to y.”

A problem arises here in Arrow’s logic. According to Axiom 1, one of the following must

be true: 1) xRy; 2) yRx; 3) both xRy and yRx. If yRx is not true, then either (1) xRy or (3) both xRy

and yRx must be true. Thus, Definition 1 doesn’t make sense because xPy and (3) above cannot

be true at the same time. Definition 1 conflicts with Axiom 1. Definition 2 is logically consistent

but unnecessary. It also defines a tie as an indifference which limits the generality of the

analysis. In addition, it stipulates a logical relationship between xRy and yRx: xly = xRy AND yRX,



where AND is the logical and, whereas Axiom 1 only requires that “both [events] may [occur]”

which is heuristically a tie.

Arrow states: “Axioms 1 and 2 do not exclude the possibility that for some distinct x and
y, both xRy and yRx. A strong ordering, on the other hand, is a ranking in which no ties are
possible.” Clearly, Arrow intends to define a tie as an indifference or he wouldn’t imply that his
analysis includes the possibility of a tie. The statement that “a strong ordering ... is a ranking in
which no ties are possible” is also not true. Consider the strong ranking operator P. In an
election between two candidates, x and y, in which half the voters prefer x to y and half prefery
to x, the result is clearly a tie between x and y. One can also consider the result to be a tie

between the orderings xPy and yPx or using my notation: {xPy, yPx}.

Arrow further compounds the error of Definition 1 with

Lemma1(e): “Forallxandy, either xRy or yPx.”

It can not be too strongly emphasized that not xRy is yRx or {xRy, yRx}= xly and not yPx.
This makes sense heuristically since if y is not “preferred or indifferent to” x, then any of the
following may be true: 1) x may be “preferred or indifferent” to y or 2) x may be indifferent to y
or 3) x may be preferred to y. There is no way to know that xPy when the specification is xRy or
yRx or xly. If we could know that vy is not preferred to x AND y is not indifferent to x, then we
would know that xPy. But we only know that y is not “preferred or indifferent” to x. This is one
of the problems of Arrow’s analysis that leads to the erroneous conclusion that social choice is

impossible.

The Social Choice Function

The choice function, C(S), is defined by Arrow (p. 15) as follows:

Definition 3: “C(S) is the set of all alternatives in S such that, for every y in S, sRy.”



As such it can be used to specify ties among alternatives if the set, C(S), contains more
than one element. Sen (1970, p. 48) says, "Arrow's impossibility theorem is precisely a result of
demanding social orderings as opposed to choice functions." In other words, if the solutions
required were simply alternatives, Arrow’s Impossibility Theorem would not apply. Since Arrow
only uses it in his specification of the Condition of the Independence of Irrelevant Alternatives,
it would have been more natural (and certainly stronger) to define C(S) as an ordering over a
subset instead of the highest ranking alternative or set of alternatives in a subset. Why, if
orderings are required in the solution, should only top-ranking alternatives be required in one
of the conditions? And why, if orderings are required, should ties only be allowed among
alternatives and not among orderings? We define an ordering function herein which
strengthens the Condition of Independence of Irrelevant Alternatives and allows for ties among

orderings as well as ties among alternatives.

Arrow (p.15) makes the following incorrect statement: “Each element of C(S) is to be
preferred to all elements of S not in C(S) and indifferent to all elements of C(S); and, therefore,
if x belongs to C(S), xRy for all yin S.” Assuming we have specified xRy, yRx or {xRy, yRx} for all x
andyinS, we don’t know whether one element is preferred to another element—only that one
element is “preferred or indifferent” to another element. Therefore, we can’t know that the
elements of C(S) are “preferred to all elements of S not in C(S),” only that the elements of C(S)
are “preferred or indifferent” to the elements not in C(S). For example, let’s assume the
following set S and the following relationships:

S={xy,z}

XRy, YRz, xRz
Then, clearly C(S) = x. y and z are not in C(S), but x is not preferred to y and z but it is
“preferred or indifferent” to y and z and for every element, w, of S xRw which is all Definition 3

requires.



For x and y in C(S), xRy and yRx or {xRy, yRx}. For x in C(S) and z not in C(S), xRz and not
ZRx, not {xRz, zRx}. Arrow’s definition of C(S) makes sense. However, it would be clearer if the

following statement would be appended: For y in C(S), xRy and yRx. For y not in C(S), xRy.

Clearly, for x and y in C(S), xly according to Definition 2 and this is the basis for Arrow’s
claim that he provides for ties. However, note that he has totally identified a tie as an

indifference.

If the relationships among the alternatives in S are transitive according to Axiom 2 and
either xRy or yRx but not both, then C(S) can contain only one element since the elements can
be ordered, for example, as follows: xRyRz. If ties are possible, then, for example, we might

have the following relationship:

{xRy, yRx}, yRz, xRz

Here, according to Arrow’s Definition 2 we could write xly and
C(S) = {x,y}. Then the elements of C(S) are indifferent to each other but are “preferred or

indifferent” (not “preferred” as Arrow states) to the element, z, not in C(S).

If the relationships are intransitive, then C(S) might be empty. For example, if xRy, yRz
and zRx, then C(S) is empty since there is no element that is “preferred or indifferent” to every

other element.

Consider the example: {xRy, yRx}, {yRz, zRy}, xRz or xly, yRz, xRz according to Definition
2. What is C(S)? Clearly, C(S) is {x,y} since xRy, xRz and yRx, yRz. This does not violate Arrow’s
Axiom 2 since xRy and yRz imply xRz. However, this does violate Arrow’s Lemma 1(d): If xly and
ylz, then xlz, since xly and ylz but xRz. Clearly, Arrow’s definition of transitivity is incomplete

because it doesn’t provide for the tie case.



Arrow goes on to compound the confusion over xPy and not yRx. He states: “Conversely,
suppose C[x,y] contains the single element x. Since y does not belong to C[x,y]), not yRx; by
Definition 1, xPy.” But not yRx is xRy or {xRy, yRx} by Axiom 1, not xPy. The root of the problem
is that xPy implies xRy but not vice versa. Not yRx does not imply xPy, but it implies either xRy

or {xRy, yRx}. Similarly, xly implies xRy, but xRy does not imply xly.

Consider xRyRz. Arrow would have us believe that since not yRx, xPy and since not zRy,
yPz and, therefore, xPz. However, if x is preferred or indifferent to y and y is preferred or
indifferent to z, then there is the possibility that x is indifferent to y and y is indifferent to z and,

therefore, x is indifferent to z.

Arrow’s Lemma 2 is also wrong.

LEMMA 2: A necessary and sufficient condition that xPy is that x be the sole element of C([x,y]).

However, if x is the sole element of C([x,y]), then xRy by Definition 3 and if xRy, C([x,y]) is

x by definition. Therefore, xPy in Lemma 2 should be replaced by xRy.

Transitivity

So far we have been considering the relationship between just two alternatives: xRy.
When there are three or more alternatives, then Arrow’s Axiom 2, the axiom of transitivity
comes into effect. Transitivity limits the total number of logical possibilities to just those that
heuristically and intuitively make sense. If x is “preferred or indifferent” to y and y is “preferred
or indifferent” to z, then it makes sense that x should be “preferred or indifferent” to z. To say
that z is “preferred or indifferent” to x in the last sentence would not make sense although xRy,
yRz and zRx is a logical possibility. Thus transitivity imposes a rational limitation on the total
number of logical possibilities. Another logical possibility, if xRy and zRy, then xRz or zRx, need
not be stated since the implication does not imply a specific logical possibility. Either possibility

is intuitively appropriate.



From Axiom 1 we know there are three possibilities: xRy, yRx or {xRy, yRx}. Arrow’s
Axiom 2, while correct insofar as it goes, does not take into account the tie case: {xRy, yRx}.
Heuristically, Axiom 2 makes sense as long as there are no ties involved. Therefore, it is fair to
ask how the tie case affects the axiom of transitivity. There are 32 logical combinations of xRy,
yRx and {xRy, yRx}. There are only the following cases involving ties. The relationships which are
marked transitive are those which make intuitive sense and are non-trivial in that only one of

the two possible logical implications makes sense. The logic is Relationship 1 and Relationship 2

imply Relationship 3.



Case Relationship 1
1 {XRy, yRx}
2 {xRy, yRx}
3 {xRy, yRx}

4 {XRy, yRx}
5 XRy
6 xRy
7 YRx
8 yRx
9 XRy
10 xRy
11 YRx
12 yRx
13 {xRy, yRx}
14 {xRy, yRx}
15 {xRy, yRx}
16 {xRy, yRx}
17 XRy
18 yRx
19 {XRy, yRx}

There are 5 non-trivial relationships from the above table:

Relationship 2

yRz
yRz
zRy
zRy
{yRz, zRy}
{yRz, zRy}
{yRz, zRy}
{yRz, zRy}
yRz
zRy
yRz
zRy
{yRz, zRy}
{yRz, zRy}
yRz
zRy
{yRz, zRy}
{yRz, zRy}
{yRz, zRy}

1) If {xRy, yRx} and yRz, then xRz.

2) If {xRy, yRx} and zRy, then zRx.

3) If xRy and {yRz, zRy}, then xRz.

4) If yRx and {yRz, zRy}, then zRx.

Relationship 3 Transitive?
xRz Yes
ZRx No
xRz No
ZRx Yes
xRz Yes
zRx No
xRz No
ZRx Yes

{xRz, zRx} No
{XRz, zRx} Trivial
{xRz, zRx} Trivial
{XRz, zRx} No
xRz No
ZRx No
{XRz, zRx} No
{xRz, zRx} No
{XRz, zRx} No
{xRz, zRx} No
{XRz, zRx} Yes



5) If {xRy, yRx} and {yRz, zRy}, then {xRz, zRx}.

These 5 relationships along with the relationship from Axiom 2 define transitivity when
ties are taken into consideration. Since

xly = {xRy, yRx} by Arrow, we can write the following transitive relationships.

1) xRyRz
2) xlyRz
3) zRxly
4) xRylz
5) yRxlz

6) xlylz

Any permutation of x,y and z is allowed in the above relationships. These taken together
with the trivial relationships are the only relationships allowed by a generalized version of
Axiom 2. Instead of Arrow’s definition of indifference given above we can define a tie operator,
T, such that xTy = {xRy, yRx}. This would be a more general relationship way of defining {xRy,

yRx} than as an indifference.

A generalized version of Axiom 2, then, limits the relationships among three alternatives
to the ones given above which can be expressed as alternative operator alternative operator
alternative operator. Any relationship among three variables that cannot be expressed in this

way is intransitive.

For three alternatives, Axiom 1 needs to be generalized also. There are six possible
outcomes not involving ties: xRyRz, xRzRy, yRxRz, yRzRx, zRxRy, zZRyRx. These correspond to xRy
and yRx in the binary case. In order to be complete, we need to include all combinations of

these outcomes as possible outcomes similar to the binary case.
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Axiom 1 (generalized): For all x, vy, z, either xRyRz or xRzRy or yRxRz or yRzRx or zRxRy or

ZRyRx or combinations of the type {xRyRz, xRzRy} or combinations of the type {xRyRz,

xRzRy, yRxRz} or combinations of the type {xRyRz, xRzRy, yRxRz, yRzRx} or

combinations of the type {xRyRz, xRzRy, yRxRz, yRzRx, zZRxRy} or {xRyRz, XxRzRy, yRxRz, yRzRX,

ZRxRy, zRyRx} where is the binomial coefficient

The Social Welfare Function (SWF)

Arrow defines a SWF as follows:

Definition 4: By a social welfare function will be meant a process or rule which, for each
set of individual orderings Ry, ..., Rn for alternative social states (one ordering for each

individual), states a corresponding social ordering of alternative social states, R.

Therefore, the scenario is that each individual voter/consumer specifies either xRiy or
yRix or possibly, for the sake of completeness, {xRiy, yRix}. There is absolutely no way to
determine whether or not a voter prefers x to y or y to x because his specification is that he
“prefers or is indifferent” between x and y. We cannot ever conclude that not yRix is xPiy
because we never know particular preference and indifference information—only “preference
or indifference” information. We know from Axiom 1 that either xRy or yRix or both which we
write {xRiy, yRix}. Either we have xRiy or yRix or a tie. Arrow goes on to define a tie as an
indifference. In any case, if yRix is not true, then xRiy or {xRiy, yRix} must be true. We can never
get preference information out of the individual orderings Ry, ..., Rn since it’s not called for in

Definition 4.

Even with a formal logical consideration, preference information is not available. Let’s

define xRy formally as xPy OR xly where OR is logical or. Then if each individual specifies

11



according to Axiom 1 either 1) xRiy, 2) yRix or 3) {xRiy, yRix}= xliy, one of the above three must
be true and the other two false. Therefore, if NOT yRix is true where NOT is the logical not, then
either xRiy or xliy must be true. If individual i specifies xRiy, one cannot conclude xPjy; one can
only conclude that i prefers x to y or is indifferent between x and y. We can only conclude that
xPiy if we know that xRiy AND {NOT xliy} where AND is the logical and. But by Definition 4 and
Axiom 1, we do not elicit that information from individual i. We only elicit 1), 2) or 3) above and

not {(2) AND NOT (3)}.

Even without ties, NOT yRix = xPiy is not true. If we assume that each individual can
only specify xRiy or yRix and cannot specify  {xRiy, yRix}= xliy, we still cannot extract preference
information. If y is not preferred or indifferent to x, y can still be indifferent to x. Therefore,

NOT yRix does not imply xPiy. The truth table is the following:

yRix  NOT yRix yPix  xPy  xly

0 1 0 0 1
0 1 0 1 0

Considering the SCF and Definition 4, if the SWF were xRyRz, the SCF would be x. If the
SWF were {xRy, yRx}Rz or in Arrow’s notation xlyRz, the SCF would be [x,y]. The SCF truncates
the SWF and yields the top alternative or set of alternatives in case the top alternatives are
tied. With three alternatives it is possible in accordance with generalized Axiom 1 to have
solutions of the form {xRzRy, zZRyRx} or {zRyRx, yRxRz, yRzRx}. This generalizes directly from the
binary case, {xRy, yRx}. The most general tie with three alternatives would be {xRyRz, xRzRy,

YRxRz, yRzRx, zRxRy, zRyRx}.

With generalized Axiom 1, a tie refers to orderings and not to alternatives. The choice
function C(S) would specify a tie between the alternatives x and y if xlyRz were the social
ordering, for example. We are considering here ties among the orderings themselves and not

just among the "top slot" of those orderings.

12



Let us assume there are six voter/consumers and that each specifies a different
ordering. There is then one specification for each possible individual ordering. The common
sense, heuristic solution is a tie among all the possible orderings. Similarly, there are 24
possible non-tie orderings for 4 alternatives, and, for the case of 24 voter/consumers, each
specifying a different ordering, common sense would dictate a tie among all the possible social
orderings. A similar case can be made for m=5, 6, ... . These are the broadest conceivable tie
sets, and will be called maximal tie sets. Tie sets involving less than the total number of

orderings are also possible and demanded by the completeness requirement.

Independence of Irrelevant Alternatives
Arrow postulates five conditions with which, in addition to Axioms 1 and 2, a SWF
should be compliant. The only one of these that involves the SCF is Condition 3, the

Independence of Irrelevant Alternatives.

Condition 3: “Let Ry, ..., Rnand R'y, ..., R'y be two sets of individual orderings and let C(S)
and C'(S) be the corresponding social choice functions. If, for all individualsiand xand y in a

given environment S, xRiy if and only if xR"y, then C(S) and C'(S) are the same.”

Arrow postulates that only the top slot of the orderings in environment S be the same
since C(S) only selects the top slot. It might be asked why it shouldn’t be required that the top
two slots of the orderings be the same or the top three slots etc. Therefore, for a general SWF
solution such as

X1RX2R ... XjRXj+1R ... Xm-1RXm

we can generalize the SCF as follows:

C1=X1

13



C2 = x1Rx2

G = xaRxz2R ... Rx;

Cjis the ordering of the top j alternatives. In particular, if there are s alternatives in the
environment S, then Cs would be the ordering of all those alternatives. C1 = C(S), Arrow’s social

choice function.

As an example, let us assume that R corresponding to Ry, ..., Rn is uRVRWRxRyRz and R'
corresponding to R'y, ..., R'y is uRVRyRxRwWRz and that S = {v, w, x, y}. Also all individuals vote
exactly the same for v, w, x and y in the two sets of individual orderings. Then Arrow’s
Condition 3 is met since C(S) = C'(S) = v. However, Cy(S) = VRw # C'5(S) = vRy. Similarly, C3(S) #

C'3(S) and Ca(S) # C'a(S). Arrow’s Condition 3 is the weakest possible requirement!

Consider another example. Let us assume that R corresponding to Ry, ..., Rn is
URVRWRxRyRz and R' corresponding to Ry, ..., R'n is ZRVRWRXxRyRu and that S = {v, w, x, y}. Also
all individuals vote exactly the same for v, w, x and y in the two sets of individual orderings.

Then C(S) = C'(S) = v. C2(S) = C'2(S) = vRw. C3(S) = C'3(S) = vVRWRx and Ca(S) = C'4(S) = vVRWRxRYy.

When ties are considered, Arrow’s social choice function is inadequate. Consider the
following example. R = {xRyRz, yRzRx, zRxRy}. R' = {zRxRy, yRzRx, xRzRy}. Let S = {x,y} and
assume that all individuals vote exactly the same for x and y in the two cases. In S we have R =
{xRy, yRx, xRy} and R' = {xRy, yRx, xRy}, and C(S) = C'(S) since R and R' are identical. However,
there is no way of determining what C(S) is unless an additional rule is laid down for combining
terms in the expression  {xRy, yRx, xRy}. Let us use the following rule: For m =3 and S = {x,y},
let C2(S) = the maximum over R of xRy and yRx. In the tie expression above, {xRy, yRx, xRy},

there are 2 xRys and 1 yRx. Therefore, C»(S) = xRy.

14



The generalized SCF then consists of orderings and a rule for selecting these orderings

when the SWF is singular or a tie.

The Ternary Case — n odd

We now proceed to demonstrate solutions which are social orderings for a specific SWF
for the case m = 3 which satisfy a strengthened version of Arrow’s conditions. Let us assume
alternatives x, y and z and n (odd) voter/consumers. As a consequence of Arrow’s Condition 3,
the independence of irrelevant alternatives, we know that “knowing the social choices made in
pairwise comparisons determines the entire social ordering.” Accordingly, we consider the
social choices of the alternatives two by two. Our SWF is as follows. If N(x,y) > N(y,x), then xRy.

If N(y,x) > N(x,y), then yRx. At the ternary level we have 8 cases:

15



Case 1:xRy, xRz, yRz
Case 2:xRy, xRz, zRy
Case 3:xRy, zRx, yRz
Case 4:xRy, zRx, zRy
Case 5:yRx, xRz, yRz
Case 6:yRx, xRz, zRy
Case 7:yRx, zRx, yRz
Case 8:yRx, zRx, zRy

According to the Condorcet (1785) method for determining the outcome of an election, we
consider each of the alternatives in pairs, determine the winner for each pair and then
determine the final social ordering by combining these results. We use the Condorcet method
in our SWF for the above cases in which it actually produces a result. Therefore, we have the

following:

Case Social Ordering
1 XRyRz
2 XRzRy
4 zZRxRy
5 yRxRz
7 yRzRx
8 zRyRx

This leaves only cases 3 and 6. Consider the solution {xRyRz, yRzRx, zRxRy} for Case 3. We call a
reduced ordering or reduced solution an ordering with one or more alternatives removed. If
we consider {xRyRz, yRzRx, zRxRy} and remove z, we get {xRy, yRx, XxRy}. Combining terms we
have {2xRy, yRx}. If we choose the most numerous of xRy and yRx as the solution, we get xRy by

2 to 1 which is in accordance with the binary result.

16



Likewise, if we reduce {xRyRz, yRzRx, zRxRy} by y, we get {xRz, zRx, zRx} or {xRz, 2zRx}.
2zRx > xRz and we take zRx as the reduced solution which agrees with the known binary
solution. Similarly, if we remove x from the social solution, we have {yRz, yRz, zRy} which yields

yRz. Accordingly, our SWF algorithm is as follows:

1) Choose the Condorcet solution if it exists.

2) If the Condorcet solution doesn’t exist, construct a solution

such that, when the solution is reduced by any single alternative, the
most numerous of the remaining binary

relationships is the same as the known binary solution.

Notice that our algorithm will always produce consistent results if the ternary solution is
generated from the binary solution in such a way that there is a 2 to 1 ratio between the
correct binary solution and the incorrect binary solution and then we take the larger of the two
as our reduced solution. We construct our solutions in this manner in order to be compliant
with Arrow’s Condition 3. Satisfying the other Conditions is then trivial and is easily shown.
Whether or not such a solution always exists for m > 3 will be answered affirmatively elsewhere
(Lawrence, 1998). Here all we need to show is the existence of a solution for Case 6. Consider
the solution {yRxRz, xRzRy, zRyRx}. Reduction by z yields yRx; by y, xRz; by x, zRy. These all agree

with the known binary cases and are consistent with the above definition.

Therefore, we have demonstrated a consistent algorithm for the SWF which yields the
same social orderings when reduced from the ternary case to the binary case as those
produced at the binary level directly from the domain. There is complete consistency of social
orderings and not just of alternatives produced by the choice function. The choice function only
produces the top position in an ordering. We demand consistency over all orderings which

can be produced by reducing a social ordering and this strengthens Arrow's Condition 3.
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Arrow (1951, p. 26) states that “...suppose that an election system has been devised
whereby each individual lists all the candidates in order of his preference and then, by a
preassigned procedure, the winning candidate is derived from these lists. ...Suppose an election
is held, with a certain number of candidates in the field, each individual filing his list of
preferences, and then one of the candidates dies. Surely the social choice should be made by
taking each of the individual's preference lists, blotting out completely the dead candidate's
name, and considering only the orderings of the remaining names in going through the
procedure of determining a winner.” This is precisely what we have done in choosing our SWF.
Notice that it is completely consistent with the solutions for those cases determined by the
Condorcet method and yields consistent results when the “dead” candidate is “blotted out” of
the social ordering as well as when the “dead” candidate is blotted out of the individual

orderings.

Let us examine the result produced by the SCF function for the above cases. Let S ={x,y}

Case Social Ordering Ct G
1 XRyRz X XRy
2 XRzRy X XRy
3 {xRyRz, yRzRx, zZRxRy} X xRy
4 zZRxRy z XRy
5 YRxRz v yRx
6 {yRxRz, xRzRy, zRyRx} y yRx
7 yRzRx v yRx
8 ZRyRx y YRX

Now let’s consider Arrow’s Condition 3 and let Ri be such as to produce xRy, yRz, xRz (Case 1)
and R'; be such as to produce xRy, yRz zRx (Case 3). S = {x,y}. Then Ci(S) should equal C'1(S). It
does and also C3(S) = C'2(S) which is more than Arrow requires. Similarly, all the above cases

satisfy not only Arrow’s Condition 3 which requires C1 but a stronger condition requiring Ca.
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Examining the above relationships we notice that, regardless of the relationship between x and

zand y and z, as long as xRy, C1 = x and C; = xRy.

The Ternary Case — n even

When n is even we have a total of 27 cases. We have already considered the first 8 cases
above. For convenience we define {xRy, yRx} as xTy instead of xly since it is more general. In
addition there is one more tie possibility, a three way tie: N(x,y) = N(y,x) = N(y,z) = N(z,y) =
N(x,z) = N(z,x). We write this as {xRy, yRx, yRz, zRy, xRz, zRx} and define this as xTyTz. Solutions

for the remaining cases are shown below. We also note the following transitivity requirements:
1) If xRy and yTz, then xRz;

2) If xTy and yRz, then xRz;
3) If xTy and yTz, then xTz.
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Case Binary Solutions Ternary Solution
_9: XRy, xRz, yTz XRyTz

_10: xRy, zRx, yTz {zRxRy, xRyTz, yTzRx}
_11: YRx, xRz, yTz {yRxRz, xRyTz, yTzRx}
_12: yRx, zRx, yTz yTzRx

_13: xRy, xTz, yRz {XRyRz, yRxTz, xTzRy}
_14: XRy, xTz, zRy xTzRy

_15: YRX, xTz, yRz YRxTz

_16: yRx, xTz, zRy {zRyRx, yRxTz, xTzRy}
_17: xTy, xRz, yRz xTyRz

_18: xTy, xRz, zRy {XRzRy, xTyRz, zZRxTy}
_19: xTy, zRx, yRz {yRzRx, xTyRz, zZRxTy}
_20: xTy, zRx, zRy zRxTy

_21: xRy, xTz, yTz {XRyTz, xTzRy, xTyTz}
_22: yRx, xTz, yTz {yRxTz, yTzRx, xTyTz}
_23: xTy, xRz, yTz {XRyTz, xTyRz, xTyTz}
_24: xTy, zRx, yTz {zRxTy, yTzRx, xTyTz}
_25: xTy, xTz, yRz {yRxTz, xTyRz, xTyTz}
_26: xTy, XTz, zRy {zRxTy, xTzRy, xTyTz}
_27: xTy, xTz, yTz xTyTz

Now, if xRy and S = {x,y}, we require C; = C'; regardless of the relationship between x and z and

y and z. An examination of the above cases shows this to be true.

m =4 — n odd

For m = 4 and no ties considered (n odd), we have the following solutions. (Note that
abcd = aRbRcRd.) The generalized SCF amounts to starting with the result produced by the SWF
and reducing the solution down to the set S where ST according to the above algorithm. This

is completely in accordance with starting with the set S and generating a result according to the
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above SWF. In other words we can reduce down to S or expand up to S with the same results
using the algorithm presented here. The results produced are identical and Cj(S) = C'j(S) in every

case for 1 <j<3.

Case 1: aRb, aRc, aRd, bRc, bRd, cRd Solution:abcd
Case 2: aRb, aRc, aRd, bRc, bRd, dRc Solution:abdc
Case 3: aRb, aRc, aRd, bRc, dRb, cRd Solution:abcd, acdb, adbc
Case 4: aRb, aRc, aRd, bRc, dRb, dRc Solution:adbc
Case 5: aRb, aRc, aRd, cRb, bRd, cRd Solution:acbd
Case 6: aRb, aRc, aRd, cRb, bRd, cRd Solution:abdc, acbd, adcb
Case 7: aRb, aRc, aRd, cRb, dRb, cRd Solution:acdb
Case 8: aRb, aRc, aRd, cRb, dRb, dRc Solution:adcb
Case 9: aRb, aRc, dRa, bRc, bRd, cRd Solution:abcd, becda, dabc
Case 10: aRb, aRc, dRa, bRc, bRd, dRc Solution:abdc, bdac, dabc
Case 11: aRb, aRc, dRa, bRc, dRb, cRd Solution:abcd, dabc, cdab
Case 12: aRb, aRc, dRa, bRc, dRb, dRc Solution:dabc
Case 13: aRb, aRc, dRa, cRb, bRd, cRd Solution:acbd, cbda, dacb
Case 14: aRb, aRc, dRa, cRb, bRd, dRc Solution:acbd, bdac, dacb
Case 15:  aRb, aRc, dRa, cRb, dRb, cRd Solution:acdb, cdab, dacb
Case 16: aRb, aRc, dRa, cRb, dRb, dRc Solution: dacb
Case 17: aRb, cRa, aRd, bRc, bRd, cRd Solution:abcd, bcad, cabd
Case 18: aRb, cRa, aRd, bRc, bRd, dRc Solution:abdc, bdca, cabd
Case 19: aRb, cRa, aRd, bRc, dRb, cRd Solution:adbc, bcad, cadb
Case 20: aRb, cRa, aRd, bRc, dRb, dRc Solution:adbc, dbca, cadb
Case 21: aRb, cRa, aRd, cRb, bRd, cRd Solution: cabd
Case 22: aRb, cRa, aRd, cRb, bRd, dRc Solution:cabd, abdc, dcab
Case 23: aRb, cRa, aRd, cRb, dRb, cRd Solution:cadb
Case 24: aRb, cRa, aRd, cRb, dRb, dRc Solution:cadb, dcab, adcb
Case 25: aRb, cRa, dRa, bRc, bRd, cRd Solution:abcd, bcda, cdab
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Case 26:
Case 27:
Case 28:
Case 29:
Case 30:
Case 31:
Case 32:
Case 33:
Case 34:
Case 35:
Case 36:
Case 37:
Case 38:
Case 39:
Case 40:
Case 41:
Case 42:
Case 43:
Case 44:
Case 45:
Case 46:
Case 47:
Case 48:
Case 49:
Case 50:
Case 51:
Case 52:
Case 53:
Case 54:

aRb, cRa, dRa, bRc, bRd, dRc
aRb, cRa, dRa, bRc, dRb, cRd
aRb, cRa, dRa, bRc, dRb, dRc
aRb, cRa, dRa, cRb, bRd, cRd
aRb, cRa, dRa, cRb, bRd, dRc
aRb, cRa, dRa, cRb, dRb, cRd
aRb, cRa, dRa, cRb, dRb, dRc
bRa, aRc, aRd, bRc, bRd, cRd
bRa, aRc, aRd, bRc, bRd, dRc
bRa, aRc, aRd, bRc, dRb, cRd
bRa, aRc, aRd, bRc, dRb, dRc
bRa, aRc, aRd, cRb, bRd, cRd
bRa, aRc, aRd, cRb, bRd, dRc
bRa, aRc, aRd, cRb, dRb, cRd
bRa, aRc, aRd, cRb, dRb, dRc
bRa, aRc, dRa, bRc, bRd, cRd
bRa, aRc, dRa, bRc, bRd, dRc
bRa, aRc, dRa, bRc, dRb, cRd
bRa, aRc, dRa, bRc, dRb, dRc
bRa, aRc, dRa, cRb, bRd, cRd
bRa, aRc, dRa, cRb, bRd, dRc
bRa, aRc, dRa, cRb, dRb, cRd
bRa, aRc, dRa, cRb, dRb, dRc
bRa, cRa, aRd, bRc, bRd, cRd
bRa, cRa, aRd, bRc, bRd, dRc
bRa, cRa, aRd, bRc, dRb, cRd
bRa, cRa, aRd, bRc, dRb, dRc
bRa, cRa, aRd, cRb, bRd, cRd
bRa, cRa, aRd, cRb, bRd, dRc
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Solution
Solution:
Solution
Solution:
Solution
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution
Solution:
Solution:

Solution:

:abdc, bdca, dcab

cdab, bcda, dabc

:dcab, dbca, dabc

cabd, cbda, cdab

:cabd, bdca, dcab

cdab
dcab
bacd
badc
acdb, bacd, dbac
adbc, badc, dbac
acbd, bacd, cbad
adcb, badc, cbad
acdb, bacd, cdba
adcb, badc, dcba
bacd, bcda, bdac
bdac
bacd, cdba, dbac
dbac
acbd, bdac, cbda
dacb, bdac, cbda
acdb, dbac, cdba
dacb, dbac, dcba
bcad
badc, bcad, bdca

:cadb, bcad, dbca

adbc, bcad, dbca
cbad
badc, cbad, dcba



Case 55: bRa, cRa, aRd, cRb, dRb, cRd Solution:cadb, cbad, cdba

Case 56: DbRa, cRa, aRd, cRb, dRb, dRc Solution:adcb, cbad, dcba
Case 57: bRa, cRa, dRa, bRc, bRd, cRd Solution: bcda
Case 58: bRa, cRa, dRa, bRc, bRd, dRc Solution: bdca
Case 59: bRa, cRa, dRa, bRc, dRb, cRd Solution: bcda, cdba, dbca
Case 60: bRa, cRa, dRa, bRc, dRb, dRc Solution:dbca
Case 61: bRa, cRa, dRa, cRb, bRd, cRd Solution:cbda
Case 62: bRa, cRa, dRa, cRb, bRd, dRc Solution: bdca, dcba, cbda
Case 63: DbRa, cRa, dRa, cRb, dRb, cRd Solution:cdba
Case 64: bRa, cRa, dRa, cRb, dRb, dRc Solution:dcba

Let S1={a}, S2 ={a, b}, S3={a, b, c}. Then C1(S1) = C'1(S1); C2(S2) = C'2(S2); C3(S3) = C'5(S3) for every
possible case above by inspection. For example, consider Cases 59 and 60 as R and R’,

respectively. C1(S1) = C'1(S1) = a; C2(S2) = C'2(S2) = bRa; C3(S3) = C'3(S3) = bRcRa.

Conclusion

A generalized SCF was developed in which orderings can be extracted from a SWF for a
set SCT where the set T contains all m alternatives under consideration. The relationship
between the SCF and the SWF was examined, and it was shown that solutions produced by a
particular SWF for S are the same as the solutions produced by the highest order, generalized
SCF for S. In other words, using the SWF and generating solutions for ST, yields the same
results as taking the solutions produced by the SWF for the set T and applying the generalized
SCF.

Arrow claims to provide for tie solutions using the SCF. However, the SCF can only
produce ties among alternatives. Since the purpose of the SWF is to produce orderings, it would
seem natural to explore the possibility of ties among orderings. In his Axiom 1 Arrow allows for
ties between orderings for two alternatives. We have generalized this to allow for ties among

orderings of three or more alternatives.
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We have also generalized the axioms of transitivity and completeness to take into
account tie solutions. If a solution produced by a SWF is a tie, then further measures can be
taken to winnow the solution set to a singular solution at least in some cases. This is the subject

of another paper and was not considered here.

We have pointed out several errors in Arrow’s logic—in particular involving his assertion
that NOT yRx = xPy which is untrue. The logical errors throw into question Arrow’s entire

analysis which, therefore, should not be considered cast in concrete.

We have shown that, when ties are properly considered, a SWF exists for m = 3 which
complies with a strengthened version of Arrow’s Condition 3, the Independence of Irrelevant
Alternatives. Elsewhere (Lawrence 1998), it has been shown that this result complies with
Arrow’s other conditions and generalizes for any value of m and n. Therefore, social choice or,
more precisely, a SWF does exist when ties among orderings are considered correctly.
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