A Social Choice Algorithm

Abstract

This paper presents an algorithm which represents a social welfare function that
maps the domain of all possible combinations of individual choices into
corresponding social choices. By means of a proper treatment of tie solutions,
Condorcet’s method of determining the outcome of an election is extended to

cases that have previously produced a “paradox of voting.”

Our method is based on pairwise comparisons of candidates by voters
and meets Arrow’s five criteria and his axioms 1 and 2. Therefore, we have
discovered a method which resolves the paradox of voting and extends to many

other cases a generalized Condorcet solution.

Solutions for all cases involving the R (preference or indifference) operator
are worked out for m (number of alternatives) = 3. This paper lays the
groundwork. A companion paper defines the algorithm in complete detail and

proves that it provides viable solutions in every case.



Introduction

In 1785 The Marquis de Condorcet (Granger [1989], McLean and Hewitt [1994])
published his Essai (1785) in which he pointed out the problems associated with
an election in which there are three or more candidates. This has become known
as the paradox of voting. Condorcet and the American President, Thomas
Jefferson, were collaborators in the production of both the French and American
Constitutions. Condorcet lost his life in the French Revolution because he left his
secure hiding place when he learned that his host was subject to the death
penalty for harboring him. He was preceded in the theory of elections by a few
years by his friend Jean-Charles de Borda (1781) who proposed the rank-order
count method of voting. The French Enlightenment philosophers hoped to
“carry the methods of rigorous and mathematical thought beyond the physical

and into the realms of the human sciences.” (Black[1958])

Over the years there have been various writers that have contributed to
the theory of elections including E. ]J. Nanson (1907) and the Reverend C. L.
Dodgson (Lewis Carroll) (1873, 1874, 1876). In 1951 Nobel Laureate Kenneth J.
Arrow published Social Choice and Individual Values in which he explored the
question of whether or not individual preferences could be aggregated in some
rational way in order to form a social choice. He postulated five rational and
ethical criteria and two axioms that such a social welfare function should meet,
and then proceeded to prove that no such social welfare function existed. This
theorem is known as Arrow's Impossibility Theorem, and an impressive
literature concerning itself with what has come to be known as Social Choice
theory has developed in the last forty -six years. At least one author considers
that Arrow's Theorem “has a good claim to be considered the outstanding

problem in the philosophy of economics” (MacKay [1980]).



Some of the literature has been concerned with finding a way around
Arrow's basic result that no rational social choice is possible by relaxing one or
more of his criteria (Sen [1970], Riley [1988], Murakami [1968]). Arrow's theorem
has important political, economic and social implications since, if indeed no
rational way to aggregate individual preferences is possible and Pareto
optimality is the best that can be achieved, then a populist democracy which
closely reflects the will of the people becomes impossible and free market
capitalism acquires a theoretically endorsed superiority over any kind of
populist socialistic or democratic economic system. Liberal or Madisonian
democracy in which the purpose of voting is just to elect leaders and lawmakers
becomes all that is attainable while populist or direct democracy in which social
policies are decided upon directly by voting becomes theoretically unfeasible.
The notion of electronic democracy in which voters vote directly on issues from
computer terminals and then supercomputers tally the results [what might be
called an Information Age Utopia] is not theoretically acceptable. These
realizations have produced pessimism and even nihilism among proponents of
welfare economics (Bergson, 1966). However, advocates of democratic voting
systems should be equally concerned as Arrow's result tarnishes the validity of

democratic elections as well (Riker [1982], Schofield [1985]).

In this paper we will present an algorithm which provides a solution for
the social choice problem for any number of alternatives without diluting
Arrow's five criteria and two axioms for social choice. In fact we strengthen them
considerably. We also give a more rigorous statement of those criteria. In the
companion paper, Proving Social Choice Possiblee, we prove that the algorithm
works for all values of m, the number of alternatives and for any number of
voters, n. Our method is ordinal (rather than cardinal), based on pair-wise

comparisons and independent of irrelevant alternatives. It is shown in this paper



that the key to opening the door of social choice is the proper consideration of tie

solutions.



Notation

We follow conventional notation. Let us assume that we have a society
composed of n voters. For identification purposes, we can number them from 1
ton, 1<i<n. We will refer to the ith individual. We assume an alternative set, S,
consisting of m alternatives: a, b, c... . Let the set {x1, x2..xm} consist of some
permutation of the alternative set {a,b,c...}. Arrow uses an R notation, which we

will follow, which means “is preferred or is indifferent to.” To indicate that voter
i prefers a to b or is indifferent between a and b, we would write aR;b. We

assume that each voter has a “preference or indifference” relationship, Rj, over

the alternative set as follows:

Rj = xj1Rixi2R;...xjmM-1R; x;m
where

xik represents the kth preference or indifference” of the ith voter.

We will use a shorthand notation as follows: abed for aR;b R;c R;d.
The Social Welfare Function

A function is a mapping from a set of elements known as the domain to a set of
elements known as the range in such a way that each element of the domain is
connected with not more than one element of the range. Now the mapping from
domain to range can be in such a way that for every element of the range there is
at most one corresponding element of the domain (one-to-one or injective); for
every element of the range there is one or more corresponding elements of the
domain (onto or surjective) or for every element of the range there is one and
only one corresponding element of the domain (one-to-one correspondence or

bijective).

The Social Welfare Function (SWF) maps the domain which consists of
all possible combinations of R;j 1<i<n, votes onto the range, each element of

which is a possible social “preference or indifference” relationship, R, which is
equivalent to the whole set of relationships, Rj, available to the individual voter.

The domain can be represented as the set of all possible combinations { R1, Ry,...
Ry} where each Rj can take on one of m! values. (If there are m alternatives, there



are m! permutations of those alternatives.) There are thus (m!)" elements in the

domain. The corresponding range would be the set of values
{R} = {xIRx2R...xm-1R xm}

where the set {x1, x2..xm} can take on m! possible values. The set {R}, the possible
social choices, is identical to the set { R;} available to any individual.

At this point we are in complete agreement with Arrow's definition of a
SWF which states:

“By a social welfare function will be meant a process or rule which, for
each set of individual orderings Ry,...,Rp for alternative social states (one ordering
for each individual), states a corresponding social ordering of alternative social
states, R.” (1951).

In addition, we consider the possibility of social choices which are tie sets.
To motivate our discussion of tie sets, we take as an example the binary case of
two alternatives, a and b, and n voters. This is the typical, traditional voting
situation. The individual voters vote either aP;b or bP;a where aP;b means voter i

prefers a to b. The corresponding social choices are aPb and bPa. If n is an even
number and n/2 voters vote aP;b while the other n/2 voters vote bP;a, then we

have a tie which we indicate {aPb,bPa}. Therefore, the set of range elements that

can be considered social choices are aPb, bPa and the tie set, {aPb,bPa}.

Let N(a,b) be the number of voters who vote aPjb , and N(b,a) be the
number who vote bPja. The rule connecting domain and range elements is as
follows: If N(a,b) > N(b,a), the social choice is aPb. If N(b,a) > N(b,a), the social
choice is bPa. If N(a,b) = N(b,a) (which can only happen if n is even), the social
choice is a tie {aPb,bPa}. We denote a tie as follows: aTb. Clearly, this element

needs to be considered in the range as a distinct possibility.

Now let us consider preferences and indifferences. The individual
indifference realationship is al;b which means the i" voter is indifferent between

a and b while the social indifference relationship is alb. The individual now can
vote in one of three ways: aP;b, bPja or aljb. The social choices are aPb, bPa,

{aPb,bPa} = aTb and alb. Note that a distinction needs to be made between a
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social indifference and a social tie which are logically distinct. Now a particular
SWEF might map the case, N(a,b) = N(b,a), refered to above, into the social choice
alb while another SWF might map the same case into aTb. It is important to
preserve the distinction between these two cases so that the same options are
available in the world in which P and I are possible as are available in the world

in which just P is possible.

Arrow (1951) claims to treat ties. He asserts: “...Axioms I and II do not
exclude the possibility that for some distinct [alternatives] x and y, both xRy and
yRx. A strong ordering, on the other hand, is a ranking in which no ties are
possible.” Arrow is implying here that a social choice could consist of the tie set
{xRy, yRx}. Clearly, this would not apply to individual choice since each
individual would submit his vote in the form xRjy or yRjx but not both. It should
be pointed out that the tie set {xRy, yRx} = xTy is not the same as indifference
and does not imply the social choice xIy. Analagous to the case considered

previously in which half the voters prefered a to b, half b to a and the social
choice was {aPb,bPa}, the situation here might be that half the voters vote xRy

and half vote xR;y. The social choice {xRy, yRx} needs to be available as a

distinct and logically separate possibility from the social choice xly.

Arrow’s(1951) proof that social choice is possible for two alternatives is
questionable because he doesn’t deal with the tie case, N(x,y) = N(y,x), properly.
Arrow states: “DEFINITION 9: By the method of majority decision is meant the
social welfare function in which xRy holds if and only if the number of individuals such

that xR, y is at least as great as the number of individuals such that yR; x.”

Therefore, the case in which N(x,y) = N(y,x) would be decided xRy. But
this violates the principal of neutrality or self-duality that requires every
alternative to be treated in exactly the same way. Murakami (1968) states: “As
long as we are considering the world of two alternatives, self-duality can be
regarded as impartiality or neutrality with respect to alternatives. A self-dual
social decision function has exactly the same structure regarding issue x against y
as it does regarding issue y against x.” Self-duality is a stronger version of

Arrow’s Condition 3 — Citizen’s Sovereignty, but one would think that, since



Arrow provided for the possibility of the tie set, {xRy, yRx}, in Axiom [, it should
be called for in this case.

In showing connectivity Arrow states: “Clearly, always either N(x,y) =
N(y,x) or N(y,x) = N(x,y), so that, for all x and y, xRy or yRx.” This is an incorrect
statement. One could say correctly that ‘either N(x,y) = N(y,x) or N(y,x) > N(x,y)’
or ‘either N(x,y) > N(y,x) or N(y,x) 2 N(x,y)" or “either N(x,y) > N(y,x) or N(y,x)
> N(x,y) or N(y,x) = N(x,y).” The latter restatement then would suggest the
conclusion that either xRy or yRx or {xRy, yRx}. However, Arrow’s definition of
majority rule would have to be changed to allow for the tie case. With these
changes one could then go on to prove that social choice was indeed possible for

the case of two alternatives.

Arrow’s statement that in a “strong ordering ... no ties are possible”
violates the common sense notion considered above in which (when only
preferences are considered) n/2 voters prefer a to b and n/2 voters prefer b to a.
Clearly, this is a tie, and clearly we cannot have the social choice alb since the
indifference operator is not a part of the domain or the range. The social choice
must be {aPb, bPa}.

In accordance with Arrow’s Axiom I which states: “For all x and y, either
xRy or yRx” and about which he states: “Note also that the word “or” in the
statement of Axiom I does not exclude the possibility of both xRy and yRx.”, the
social choice tie set, {xRy, yRx}, is made possible because of the assumption by
Arrow of the inclusive or in Axiom I. If we would have had xRy AND yRx as a
possibility in Axiom I, then indeed this would imply xIy. When the “inclusive
or” interpretation of Axiom I is extended to three alternatives, we would have

social choice solutions, for instance, of the form {xRyRz,yRxRz,zRyRx}.

An important thing to keep in mind here is that a tie refers to elements of
the range and not to alternatives. If there are just two alternatives in an election,
we say, sloppily, that it's possible for there to be a tie between x and y when
what we mean (considering just preference relationships) is that there is a
possibility of a tie between xPy and yPx which are the social choices. In other
words, xPy and yPx are the social choices for which a tie may exist not x and y

which are the alternatives. The same should hold true for xRy and yRx.
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Therefore, in general we consider that the range consists of all possible elements,
{R} = {x1Rx2R...xm-1R xm}, plus elements which represent all possible combinations of

these elements.
Paradox of Voting

According to the Condorcet method for determining the outcome of an election,
we consider each of the alternatives in pairs, determine the winner for each pair
and then determine the final social ordering by combining these results. For
example, if there are 4 alternatives and 5 voters with votes abcd, abed, adcb, cdab
and acbd, clearly, aRb (since there are 5 votes for ab and none for ba), aRc (since
there are 4 votes for ac and 1 vote for ca), aRd (4 votes for ad and 1 for da), cRb (3
votes for cb and 1 for bc), bRd (3 votes for bd and 1 for db) and cRd (4 votes for
cd and 1 for dc). So the winner is acbd. However, there are cases for which this

method will not work.

Consider the following: 3 alternatives and 3 voters. Voter 1 votes abc;
voter 2 votes bca; and voter 3 votes cab. If we consider the alternatives pairwise
we have 2 votes for ab and 1 for ba; 2 votes for bc and 1 vote for cb; 2 votes for ca
and 1 for ac. Therefore, a is preferred to b is preferred to c is preferred to a, and
we have the cycle discovered by Condorcet. This is called the “paradox of

voting.” Clearly, any of the choices, abc, bca or cab would be incorrect.

The heart of Arrow's analysis is the criterion known as the Independence
of Irrelevant Alternatives. Arrow (1951) states that “...suppose that an election
system has been devised whereby each individual lists all the candidates in order
of his preference and then, by a preassigned procedure, the winning candidate is
derived from these lists. ...Suppose an election is held, with a certain number of
candidates in the field, each individual filing his list of preferences , and then one
of the candidates dies. Surely the social choice should be made by taking each of
the individual's preference lists, blotting out completely the dead candidate's
name, and considering only the orderings of the remaining names in going

through the procedure of determining a winner.”



Now let's reconsider the voting paradox considered above, assume that
one candidate dies and recompute from the individual lists. Clearly, if c dies, ab
should be the winner since there are 2 abs to 1 ba. Similarly, if b dies, ca should
be the winner, and, if a dies, bc should be the winner. Why shouldn't a similar
demand be made of the social choice 1-€- if a candidate dies, the new social choice
is determined by blotting out the dead candidate's name from the social choice
list? For example, if the social choice were abcd and ¢ died, why shouldn't the
new social choice be abd? This is precisely the case when the Condorcet criterion
is used in a situation where it actually works. Let's consider the example
considered previously in which there were 4 alternatives and 5 voters with votes
abcd, abcd, adcb, cdab and acbd. Clearly, aRb, aRc, aRd, cRb, bRd and cRd. The
winner was acbd. Let's say c dies. We have aRb, aRd and bRd from a
consideration of the individual lists which leads by combination to the social
choice abd, and we have the social choice abd by considering the social choice
acbd and blotting out c. So we get the same social choice by building the solution
from individual lists (blotting out the dead candidate) as we do by considering
the social choice and blotting out the dead candidate.

Generalizing this notion, consider the tie solution {abc, bca, cab} for the
voter's paradox case considered above. If c dies, we have the solution {ab, ba, ab}.
Now we need come sort of combination rule to reduce this solution down to
either ab or ba. This is not necessary when the solution is not a tie, but is
necessary (although Arrow doesn’t consider it) when there is a tie and the
solution at the next lower stage contains less elements than the present stage
solution. The rule that would produce correct results in the example under
consideration would be: choose the element or elements whose number is
greatest in the tie set after the appropriate alternative has been blotted out. There
are 2 abs and 1 ba in the solution so we determine the reduced solution to be ab
which matches with our intuitive knowledge of what the solution should be.
Similarly, we get bc and ca, respectively if a or b dies. So we can expand the 3
stage 2 solutions, ab, bc and ca to the stage 3 solution {abc, bca, cab} and we can
reduce the stage 3 solution {abc, bca, cab} to the 3 stage 2 solutions ab, bc and ca.

An Algorithm which Generates Social Choices
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We now consider a general algorithm for generating solutions to the social choice
problem. In a real sense the algorithm is the SWF. We build the solution stage by
stage starting at the binary level. We first determine all the social choices by
pairwise comparisons of the m alternatives as determined by the individual
voter lists. These are the social choice solution sets for stage 2, one set for each
possible pair of alternatives. Then we build the stage 3 solution sets by taking a
binary solution and expanding it by combining it with another alternative such
that the expanded stage 3 solution reduces correctly to the stage 2 solution when
each alternative is blotted out as in the above example. We do this for each
possible combination of 3 alternatives. We continue in this way until, if there are

m alternatives, we have generated the stage m solution.

Now for some more terminology. We call the members of a social choice
tie set “elements.” We say that a social choice i-ary element “covers” an (i-1)-ary
element if a letter can be blotted out of the i-ary element in such a way that the
reduced i-ary element is identical with the (i-1)-ary element. For example, abcd

covers abc since, if a d is blotted out of abcd, we have abc.

A “combination rule” tells us how to combine terms when a letter is
blotted out in a tie solution set, and the solution set at the next lower level
contains less elements. We use the following combination rule when reducing an
i-ary solution to an (i-1)-ary solution: 1) blot out a particular letter in each
element of the tie solution set; 2) out of this set of elements, choose that set of
elements as the reduced solution if, for each element in the reduced solution,
there are more of them than there are of any element not in the reduced solution
and there are the same number of them as there are for every other element in

the reduced solution. Let's call this the “majority” combination rule.

For example, let us assume that the stage 3 and 4 solution sets are the

following:
Letter Combination Stage 3 Solution Sets Stage 4 Solution Set
a,b,c abc {abcd, acdb,adbc}
albld adb
ac,d acd
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b,c,d {bcd, cdb, dbc}

In this example, if we blot out a d at stage 4, we have the modified set,
{abc, acb, abc}. There are 2 abcs and 1 acb. Therefore the reduced solution set at
stage 3 is abc. If we blot out a ¢, we have the modified set, {abd, adb, adb}. There
are 2 adbs and 1 abd. Therefore, the reduced solution set is adb. If we blot out a
b, we have the modified set {acd, acd, adc}. There are 2 acds and 1 adc.
Therefore, the reduced solution set is acd. Finally, if we blot out an a, we have
the set {bcd, cdb, dbc} which is the solution set since all three elements occur the

same number of times.

We generalize these notions to the following definition:

Definition 1: The Lawrence SWF is an algorithm which, for m alternatives and n
voters, generates, for any stage i (2<i<m), solution sets such that, when any letter
is blotted out and using the majority combination rule, the solution set reduces to

a correct solution for stage i-1.

It should be pointed out that this is one very specific SWF which we will
use to prove that social choice is possible by proving that it always (for any m,n)
produces solutions which meet Arrow’s five criteria and two axioms. Other

SWFs may exist as well.
Examples

If m=3, there are 27 possible combinations of pairwise comparisons since all
domain elements can be collapsed down to 27 different cases. At the binary level
we have either xRy or yRx or xTy. We work out the solutions as follows for each
case. Each possible solution is rated to see how well it covers the solution sets at
stage 2 (1 point for each stage 2 element covered). Since there are 3 stage 2
solution sets each consisting of one element, a rating of 3 means that all stage 2
elements are covered by 1 stage 3 element and that element is, hence, the stage 3
solution. If there are no stage 3 elements with a 3 rating, then there will be more

than 1 stage 3 element in the solution set.

Case 1: aRb, aRc, bRc
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Stage 3 Alternatives Rating

abc 3
acb 2
bac 2
bca 1
cab 1
cba 0
Solution: aRbRcCheck: Blot out a; Solution —bRg;
Blot out b; Solution —aRc;
Blot out ¢; Solution —aRb;
Case 2: aRb, aRc¢, cRb
Stage 3 Alternatives Rating
abc 2
acb 3
bac 1
bca 0
cab 2
cba 1
Solution: aRcRbCheck: Blot out a; Solution —cRb;
Blot out b; Solution —aRc;
Blot out ¢; Solution —aRb;
Case 3: aRb, cRa, bRc
Stage 3 Alternatives Rating
abc 2
acb 0
bac 1
bca 2
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Solution:

Case 4:

Solution:

cab
cba 1

{aRbRc, bRcRa, cRaRb} Check: Blot out a; Solution —bRg;
Blot out b; Solution —cRa;
Blot out ¢; Solution —aRb;

aRb, cRa, cRb

Stage 3 Alternatives Rating

abc
acb
bac
bca

cab

N WO kR O DN -

cba

cRaRbCheck: Blot out a; Solution —cRb;
Blot out b; Solution —cRa;
Blot out ¢; Solution —aRb;
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Case 5: bRa, aRc¢, bRc

Stage 3 Alternatives Rating

abc
acb
bac
bca

cab

m O N W KL DN

cba

Solution: bRaRcCheck: Blot out a; Solution —bRg;
Blot out b; Solution —aRc;
Blot out ¢; Solution —bRa;

Case 6: bRa, aRc¢, cRb

Stage 3 Alternatives Rating

abc
acb
bac
bca

cab

N P = NN =

cba
Solution: {aRcRb, cRbRa, bRaRc¢} Check: Blot out a; Solution —cRb;

Blot out b; Solution —aRc;
Blot out ¢; Solution —bRa;
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Case 7: bRa, cRa, bRc

Stage 3 Alternatives Rating

abc
acb
bac
bca

cab

N P W N O -

cba

Solution: bRcRaCheck: Blot out a; Solution —bRg;
Blot out b; Solution —cRa;
Blot out ¢; Solution —bRa;

Case 8: bRa, cRa, cRb

Stage 3 Alternatives Rating

abc
acb
bac
bca

cab

W NN R = O

cba

Solution: cRbRaCheck: Blot out a; Solution —cRb;
Blot out b; Solution —cRa;
Blot out ¢; Solution —bRa;

Cases 9 through 27 are covered in Appendix 1.

For m=4, there are 64 cases not counting ties. These solutions are given in

Appendix 2.
Proof that Algorithm Satisfies Arrow's Criteria
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Axiom [: Connectivity
Either xRy or yRx or {xRy, yRx} by construction.
Axiom II: Transitivity

For all x, y and z, xRy and yRz imply xRz by construction; xRy and yTz
imply xRz; xTy and yRz imply xRz; and xTy and yTz imply xTz. As long as a
solution can be expressed in the form aQ'b Q?%c...y Q™'z where Q' can be either R
or T, the solution is transitive. Alternatively, any solution expressed in the form

ab(c,d)e(f,g,h)ij is transitive.
Condition 1: Existence of a free triple

Arrow only required that some set of three alternatives be available for
any logical ordering. Our algorithm assigns solutions for every logical ordering

of every individual voter.
Condition 2: Positive Association of Individual and Social Values

This Condition requires that, if every individual voter raises some
candidate in his “preference or indifferenve” list, that candidate must not be
lowered in the social choice. The algorithm considered here satisfies an even
stronger criterion which is, if any individual voter raises a candidate in his
“preference or indifference” list, that candidate must not be lowered in the social
choice.

Since the social choice is based on the choices made on binary pairs, let us
consider only one voter and only two candidates, a and b. Let us say this voter
originally preferred or was indifferent between a and b and then switched his
vote to b over a. As long as the majority of voters still prefer or are indifferent
between a and b after the switch, there will be no change in the social choice.
However, there is the possibility that the change of one vote will change the
majority to b over a. Then, at stage 2, bRa. At stage 3, if we originally had a
unique solution, then it would have to be either abc or acb. If we originally had a

tie solution, then it would have to be {abc, bca, cab} or {acb, cba, bac}. If we
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originally had a unique solution, then (after the change) we would either have a
unique solution in which b is preferred to a or a tie solution in which, in at least
one element, b is ranked higher than a. If we originally had a tie solution, then
(after the change) we would have a unique solution in which b is ranked higher
than a. In any case, if a switch between two candidates by one individual voter
affects the social choice at the binary level, it will affect the social choice at any

other level since those social choices are built up from the binary level.
Condition 3: The Independence of Irrelevant Alternatives

Since the solution is computed stage by stage from binary pairs, it will
always be the same if one or more candidates dies or drops out. In fact the
solution can be recomputed starting at stage m and going down in stage number

as well as starting at stage 1 and going up.
Condition 4: Citizens' Sovereignty

The social choice is imposed if there is some pair of alternatives a and b
such that the Social Choice will always be bRa even if, for every individual voter
aRjb. In the algorithm under consideration here, if the majority of voters prefers

a to b, then aRb and vice versa by construction.
Condition 5: The Condition of Nondictatorship

There is no dictator by construction, if the majority prefers a to b, then aRb

and vice versa.

Conclusions

We have demonstrated an algorithm which generates social choices and,
therefore, constitutes a SWEF. We allow a social choice to consist of a set of tie
elements. The algorithm is based on binary, pairwise comparisons and satisfies
all of Arrow’s conditions and axioms as originally expounded . A companion
paper, The Possibility of Social Choice, proves that the algorithm provides solutions

for all values of m (number of alternatives) and n (number of voters).
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We have shown a SWF that generalizes Condorcet’s social choice rule and
provides solutions in cases that Condorcet found to be unsolvable. Thus the
“paradox of voting” has been resolved. It remains to prove that our method
works not just in a limited number of cases but in fact in every case. We could
provide a computer program which would generate all solutions for very large
values of m (much like Fermat’s Last Theorem was shown to be true for very
large values of the appropriate index prior to being proven generally by Andrew
Wiles in 1994), but this would not prove that our algorithm provides solutions in
every case. Therefore, a general mathematical proof is necessary in order to
prove finally that social choice is possible and that Arrow’s Impossibility

Theorem is false.
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Appendix 1

Social Choice Solutions for m=3

(Both “preferences or indifferences” and ties)

Case 9: aRb, aRc¢, bTc

Stage 3 Alternatives Rating

abc
acb
bac
bca
cab
cba
a(b,c)
(b,c)a
b(a,c)
(a,c)b
c(a,b)
(a,b)c
(ab,c)

_ = O RO R WO RO R, NN

Solution: aRblc [a(b,c)] Check: Blot out a; Solution— blc;
Blot out b; Solution —aPc;

Blot out ¢; Solution — aPb;

We will just present the rest of the solutions without giving the details.

Case 10: aRb, cRa, bTc Solution: cab, a(b,c), (b,c)a
Case 11: bRa, aRc¢, bTc Solution: bac, a(b,c), (b,c)a
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Case 12:
Case 13:
Case 14:
Case 15:
Case 16:
Case 17:
Case 18:
Case 19:
Case 20:
Case 21:
Case 22:
Case 23:
Case 24:
Case 25:
Case 26:
Case 27:

bRa, cRa, bTc
aRb, aT¢c, bRc
aRb, aTc, cRb
bRa, aT¢c, bRc
bRa, aT¢c, cRb
aTb, aRc, bRc
aTb, aRc, cRb
aTb, cRa, bRc
aTb, cRa, cRb
aRb, aTc, bTc
bRa, aTc, bTc
aTb, aR¢, bTc
aTb, cRa, bTc
aTb, aTc, bRc
aTb, aTc, cRb
aTb, aTc, bTc
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Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:

(b,c)a

abc, b(a,c), (a,c)b
(a,c)b

b(a,c)

cba, b(a,c), (a,c)b
(a,b)c

acb, (a,b)c, c(a,b)
bca, (a,b)c, c(a,b)
c(a,b)

a(b,c), (a,)b, (a,b,c)
b(a,c), (b,c)a, (a,b,c)
a(b,c), (a,b)c, (a,b,c)
c(a,b), (b,c)a, (a,b,c)
b(a,c), (a,b)c, (a,b,c)
c(a,b), (a,c)b, (a,b,c)
(a,b,c)



Appendix 2

Social Choice Solutions for m=4 (no ties considered)

Case 1:

Case 2:

Case 3:

Case 4:

Case 5:

Case 6:

Case 7:

Case 8:

Case 9:

Case 10:
Case 11:
Case 12:
Case 13:
Case 14:
Case 15:
Case 16:
Case 17:
Case 18:
Case 19:
Case 20:
Case 21:
Case 22:
Case 23:
Case 24:
Case 25:
Case 26:
Case 27:
Case 28:
Case 29:
Case 30:
Case 31:
Case 32:

aRb, aR¢, aRd, bR¢, bRd , cRd
aRb, aR¢, aRd, bR¢, bRd, dRc
aRb, aR¢, aRd, bR¢, dRb, cRd
aRb, aR¢, aRd, bR¢, dRb, dRc
aRb, aR¢, aRd, cRb, bRd , cRd
aRb, aR¢, aRd, cRb, bRd , cRd
aRb, aR¢, aRd, cRb, dRb, cRd
aRb, aR¢, aRd, cRb, dRb, dRc¢
aRb, aRc¢, dRa, bR¢, bRd , cRd
aRb, aRc¢, dRa, bR¢, bRd , dRc¢
aRb, aRc¢, dRa, bR¢, dRb, cRd
aRb, aRc¢, dRa, bR¢, dRb, dRc
aRb, aRc¢, dRa, cRb, bRd , cRd
aRb, aR¢, dRa, cRb, bRd , dRc¢
aRb, aRc¢, dRa, cRb, dRb, cRd
aRb, aR¢, dRa, cRb, dRb, dRc¢
aRb, cRa, aRd, bR¢, bRd , cRd
aRb, cRa, aRd, bR¢, bRd , dRc¢
aRb, cRa, aRd, bR¢, dRb, cRd
aRb, cRa, aRd, bR¢, dRb, dRc¢
aRb, cRa, aRd, cRb, bRd , cRd
aRb, cRa, aRd, cRb, bRd , dRc¢
aRb, cRa, aRd, cRb, dRb, cRd
aRb, cRa, aRd, cRb, dRb, dRc¢
aRb, cRa, dRa, bR¢, bRd , cRd
aRb, cRa, dRa, bR¢, bRd , dRc¢
aRb, cRa, dRa, bR¢, dRb, cRd
aRb, cRa, dRa, bR¢, dRb, dRc¢
aRb, cRa, dRa, cRb, bRd , cRd
aRb, cRa, dRa, cRb, bRd , dRc¢
aRb, cRa, dRa, cRb, dRb, cRd
aRb, cRa, dRa, cRb, dRb, dRc¢
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Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:

Solution:

abcd
abdc
abcd, acdb, adbc
adbc
acbd
abdc, acbd, adcb
acdb
adcb
abcd, beda, dabc
abdc, bdac, dabc
abcd, dabc, cdab
dabc
acbd, cbda, dacb
acbd, bdac, dacb
acdb, cdab, dacb
dacb
abcd, bcad, cabd
abdc, bdca, cabd
adbc, bcad, cadb
adbc, dbca, cadb
cabd
cabd, abdc, dcab
cadb
cadb, dcab, adcb
abcd, beda, cdab
abdc, bdca, dcab
cdab, beda, dabc
dcab, dbca, dabc
cabd, cbda, cdab
cabd, bdca, dcab
cdab
dcab



Case 33:
Case 34:
Case 35:
Case 36:
Case 37:
Case 38:
Case 39:
Case 40:
Case 41:
Case 42:
Case 43:
Case 44:
Case 45:
Case 46:
Case 47:
Case 48:
Case 49:
Case 50:
Case 51:
Case 52:
Case 53:
Case 54:
Case 55:
Case 56:
Case 57:
Case 58:
Case 59:
Case 60:
Case 61:
Case 62:
Case 63:
Case 64:

bRa, aR¢, aRd, bR¢, bRd , cRd
bRa, aRc¢, aRd, bR¢, bRd , dRc¢
bRa, aR¢, aRd, bR¢, dRb, cRd
bRa, aRc¢, aRd, bR¢, dRb, dRc¢
bRa, aR¢, aRd, cRb, bRd , cRd
bRa, aR¢, aRd, cRb, bRd , dRc¢
bRa, aR¢, aRd, cRb, dRb, cRd
bRa, aR¢, aRd, cRb, dRb, dRc¢
bRa, aR¢, dRa, bR¢, bRd , cRd
bRa, aRc¢, dRa, bR¢, bRd , dRc¢
bRa, aR¢, dRa, bR¢, dRb, cRd
bRa, aRc¢, dRa, bR¢, dRb, dRc¢
bRa, aR¢, dRa, cRb, bRd , cRd
bRa, aRc¢, dRa, cRb, bRd , dRc¢
bRa, aR¢, dRa, cRb, dRb, cRd
bRa, aRc¢, dRa, cRb, dRb, dRc¢
bRa, cRa, aRd, bR¢, bRd , cRd
bRa, cRa, aRd, bR¢, bRd , dRc¢
bRa, cRa, aRd, bR¢, dRb, cRd
bRa, cRa, aRd, bR¢, dRb, dRc¢
bRa, cRa, aRd, cRb, bRd , cRd
bRa, cRa, aRd, cRb, bRd , dRc¢
bRa, cRa, aRd, cRb, dRb, cRd
bRa, cRa, aRd, cRb, dRb, dRc¢
bRa, cRa, dRa, bR¢, bRd , cRd
bRa, cRa, dRa, bR¢, bRd , dRc¢
bRa, cRa, dRa, bR¢, dRb, cRd
bRa, cRa, dRa, bR¢, dRb, dRc¢
bRa, cRa, dRa, cRb, bRd , cRd
bRa, cRa, dRa, cRb, bRd , dRc¢
bRa, cRa, dRa, cRb, dRb, cRd
bRa, cRa, dRa, cRb, dRb, dRc¢
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Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:
Solution:

bacd
badc
acdb, bacd, dbac
adbc, badc, dbac
acbd, bacd, cbad
adcb, badc, cbad
acdb, bacd, cdba
adcb, badc, dcba
bacd, bcda, bdac
bdac
bacd, cdba, dbac
dbac
acbd, bdac, cbda
dacb, bdac, cbda
acdb, dbac, cdba
dacb, dbac, dcba
bcad
badc, bcad, bdca
cadb, bcad, dbca
adbc, bcad, dbca
cbad
badc, cbad, dcba
cadb, cbad, cdba
adcb, cbad, dcba
bcda
bdca
bcda, cdba, dbca
dbca
cbda
bdca, dcba, cbda
cdba
dcba
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