
A Social Choice Algorithm

Abstract

This paper presents an algorithm which represents a social welfare function that 

maps the domain of all possible combinations of individual choices into 

corresponding social choices. By means of a proper treatment of tie solutions, 

Condorcet’s method of determining the outcome of an election is extended to 

cases that have previously produced a “paradox of voting.”

Our method is based on pairwise comparisons of candidates by voters 

and meets Arrow’s five criteria and his axioms 1 and 2. Therefore, we have 

discovered a method which resolves the paradox of voting and extends to many 

other cases a generalized Condorcet solution.

Solutions for all cases involving the R (preference or indifference) operator

are worked out for m (number of alternatives) = 3. This paper lays the 

groundwork. A companion paper defines the algorithm in complete detail and 

proves that it provides viable solutions in every case.
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Introduction

In 1785 The Marquis de Condorcet (Granger [1989], McLean and Hewitt [1994]) 

published his Essai (1785) in which he pointed out the problems associated with 

an election in which there are three or more candidates. This has become known 

as the paradox of voting. Condorcet and the American President, Thomas 

Jefferson, were collaborators in the production of both the French and American 

Constitutions. Condorcet lost his life in the French Revolution because he left his 

secure hiding place when he learned that his host was subject to the death 

penalty for harboring him. He was preceded in the theory of elections by a few 

years by his friend Jean-Charles de Borda (1781) who proposed the rank-order 

count method of voting. The French Enlightenment philosophers hoped to 

“carry the methods of rigorous and mathematical thought beyond the physical 

and into the realms of the human sciences.” (Black[1958])

Over the years there have been various writers that have contributed to 

the theory of elections including E. J. Nanson (1907) and the Reverend C. L. 

Dodgson (Lewis Carroll) (1873, 1874, 1876). In 1951 Nobel Laureate Kenneth J. 

Arrow published Social Choice and Individual Values in which he explored the 

question of whether or not individual preferences could be aggregated in some 

rational way in order to form a social choice. He postulated five rational and 

ethical criteria and two axioms that such a social welfare function should meet, 

and then proceeded to prove that no such social welfare function existed. This 

theorem is known as Arrow's Impossibility Theorem, and an impressive 

literature concerning itself with what has come to be known as Social Choice 

theory has developed in the last  forty -six years. At least one author considers 

that Arrow's Theorem “has a good claim to be considered the outstanding 

problem in the philosophy of economics” (MacKay [1980]).
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Some of the literature has been concerned with finding a way around 

Arrow's basic result that no rational social choice is possible by relaxing one or 

more of his criteria (Sen [1970], Riley [1988], Murakami [1968]). Arrow's theorem 

has important political, economic and social implications since, if indeed no 

rational way to aggregate individual preferences is possible and Pareto 

optimality is the best that can be achieved, then a populist democracy which 

closely reflects the will of the people becomes impossible and free market 

capitalism acquires a theoretically endorsed superiority over any kind of 

populist socialistic or democratic economic system. Liberal or Madisonian 

democracy in which the purpose of voting is just to elect leaders and lawmakers 

becomes all that is attainable while populist or direct democracy in which social 

policies are decided upon directly by voting becomes theoretically unfeasible. 

The notion of electronic democracy in which voters vote directly on issues from 

computer terminals and then supercomputers tally the results [what might be 

called an Information Age Utopia] is not theoretically acceptable. These 

realizations have produced pessimism and even nihilism among proponents of 

welfare economics (Bergson, 1966). However, advocates of democratic voting 

systems should be equally concerned as Arrow's result tarnishes the validity of 

democratic elections as well (Riker [1982], Schofield [1985]).

In this paper we will present an algorithm which provides a solution for 

the social choice problem for any number of alternatives without diluting 

Arrow's five criteria and two axioms for social choice. In fact we strengthen them

considerably. We also give a more rigorous statement of those criteria. In the 

companion paper, Proving Social Choice Possiblee, we prove that the algorithm 

works for all values of m, the number of alternatives and for any number of 

voters, n. Our method is ordinal (rather than cardinal), based on pair-wise 

comparisons and independent of irrelevant alternatives. It is shown in this paper 
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that the key to opening the door of social choice is the proper consideration of tie

solutions.
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Notation

We follow conventional notation. Let us assume that we have a society 
composed of n voters. For identification purposes, we can number them from 1 
to n, 1< i ≤ n. We will refer to the ith individual. We assume an alternative set, S, 
consisting of m alternatives: a, b, c... . Let the set {x1, x2...xm} consist of some 
permutation of the alternative set {a,b,c...}. Arrow uses an R notation, which we 
will follow, which means “is preferred or is indifferent to.” To indicate that voter
i prefers a to b or is indifferent between a and b, we would write aRib. We 
assume that each voter has a “preference or indifference” relationship, Ri, over 

the alternative set as follows:

Ri = xi1Rixi2Ri...xim-1Ri xim

where

xik represents the kth “preference or indifference” of the ith voter. 

We will use a shorthand notation as follows: abcd for aRib Ric Rid.

The Social Welfare Function

A function is a mapping from a set of elements known as the domain to a set of 
elements known as the range in such a way that each element of the domain is 
connected with not more than one element of the range. Now the mapping from 
domain to range can be in such a way that for every element of the range there is 
at most one corresponding element of the domain (one-to-one or injective); for 
every element of the range there is one or more corresponding elements of the 
domain (onto or surjective) or for every element of the range there is one and 
only one corresponding element of the domain (one-to-one correspondence or 

bijective). 

The Social Welfare Function (SWF) maps the domain which consists of 
all possible combinations of Ri, 1≤ i ≤ n, votes onto the range, each element of 

which is a possible social “preference or indifference” relationship, R, which is 
equivalent to the whole set of relationships, Ri, available to the individual voter. 
The domain can be represented as the set of all possible combinations { R1, R2,... 
Rn} where each Ri can take on one of m! values. (If there are m alternatives, there 
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are m! permutations of those alternatives.) There are thus (m!)n elements in the 
domain. The corresponding range would be the set of values

{R} = {x1Rx2R...xm-1R xm}

where the set {x1, x2...xm} can take on m! possible values. The set {R}, the possible 
social choices, is identical to the set { Ri} available to any individual.

At this point we are in complete agreement with Arrow's definition of a 
SWF which states:

“By a social welfare function will be meant a process or rule which, for 
each set of individual orderings R1,...,Rn for alternative social states (one ordering

for each individual), states a corresponding social ordering of alternative social 
states, R.” (1951).

In addition, we consider the possibility of social choices which are tie sets. 
To motivate our discussion of tie sets, we take as an example the binary case of 
two alternatives, a and b, and n voters. This is the typical, traditional voting 
situation. The individual voters vote either aPib or bPia where aPib means voter i

prefers a to b. The corresponding social choices are aPb and bPa. If n is an even 
number and n/2 voters vote aPib  while the other n/2 voters vote bPia, then we 

have a tie which we indicate {aPb,bPa}. Therefore, the set of range elements that 
can be considered social choices are aPb, bPa and  the tie set, {aPb,bPa}. 

Let N(a,b) be the number of voters who vote aPib , and N(b,a) be the 
number who vote bPia. The rule connecting domain and range elements is as 

follows: If N(a,b) > N(b,a), the social choice is aPb. If N(b,a) > N(b,a), the social 
choice is bPa. If N(a,b) = N(b,a) (which can only happen if n is even), the social 
choice is a tie {aPb,bPa}. We denote a tie as follows: aTb. Clearly, this element 
needs to be considered in the range as a distinct possibility.

Now let us consider preferences and indifferences. The individual 
indifference realationship is aIib which means the ith voter is indifferent between 

a and b while the social indifference relationship is aIb. The individual now can 
vote in one of three ways: aPib, bPia or aIib. The social choices are aPb, bPa, 

{aPb,bPa}  aTb and aIb. Note that a distinction needs to be made between a 
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social indifference and a social tie which are logically distinct. Now a particular 
SWF might map the case, N(a,b) = N(b,a), refered to above, into the social choice 
aIb while another SWF might map the same case into aTb. It is important to 
preserve the distinction between these two cases so that the same options are 
available in the world in which P and I are possible as are available in the world 
in which just P is possible.

Arrow (1951) claims to treat ties. He asserts: “...Axioms I and II do not 
exclude the possibility that for some distinct [alternatives] x and y, both xRy and 
yRx. A strong ordering, on the other hand, is a ranking in which no ties are 
possible.” Arrow is implying here that a social choice could consist of the tie set 
{xRy, yRx}. Clearly, this would not apply to individual choice since each 
individual would submit his vote in the form xRiy or yRix but not both. It should

be pointed out that the tie set  {xRy, yRx}  xTy is not the same as indifference 
and does not imply the social choice xIy. Analagous to the case considered 
previously in which half the voters prefered a to b, half b to a and the social 
choice was {aPb,bPa}, the situation here might be that half the voters vote xRiy 
and half vote xRiy. The social choice  {xRy, yRx} needs to be available as a 

distinct and logically separate possibility from the social choice xIy. 

Arrow’s(1951) proof that social choice is possible for two alternatives is 

questionable because he doesn’t deal with the tie case, N(x,y) = N(y,x), properly. 

Arrow states: “DEFINITION 9: By the method of majority decision is meant the 

social welfare function in which xRy holds if and only if the number of individuals such 

that xRi y is at least as great as the number of individuals such that yRi x.”

Therefore, the case in which N(x,y) = N(y,x) would be decided xRy. But 
this violates the principal of neutrality or self-duality that requires every 
alternative to be treated in exactly the same way. Murakami (1968) states: “As 
long as we are considering the world of two alternatives, self-duality can be 
regarded as impartiality or neutrality with respect to alternatives. A self-dual 
social decision function has exactly the same structure regarding issue x against y
as it does regarding issue y against x.” Self-duality is a stronger version of 
Arrow’s Condition 3 — Citizen’s Sovereignty, but one would think that, since 
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Arrow provided for the possibility of the tie set, {xRy, yRx}, in Axiom I, it should 
be called for in this case.

In showing connectivity Arrow states: “Clearly, always either N(x,y) ≥ 
N(y,x) or N(y,x) ≥ N(x,y), so that, for all x and y, xRy or yRx.” This is an incorrect
statement. One could say correctly that ‘either N(x,y) ≥ N(y,x) or N(y,x) > N(x,y)’
or  ‘either N(x,y) > N(y,x) or N(y,x) ≥ N(x,y)’ or ‘either N(x,y) > N(y,x) or N(y,x) 
> N(x,y) or N(y,x) = N(x,y).’ The latter restatement then would suggest the 
conclusion that either xRy or yRx or {xRy, yRx}. However, Arrow’s definition of 
majority rule would have to be changed to allow for the tie case. With these 
changes one could then go on to prove that social choice was indeed possible for 
the case of two alternatives.

Arrow’s statement that in a “strong ordering ... no ties are possible” 
violates the common sense notion considered above in which (when only 
preferences are considered) n/2 voters prefer a to b and n/2 voters prefer b to a. 
Clearly, this is a tie, and clearly we cannot have the social choice aIb since the 
indifference operator is not a part of the domain or the range. The social choice 
must be {aPb, bPa}.

In accordance with Arrow’s Axiom I which states: “For all x and y, either 
xRy or yRx” and about which he states: “Note also that the word ‘or’ in the 
statement of Axiom I does not exclude the possibility of both xRy and yRx.”, the 
social choice tie set, {xRy, yRx}, is made possible because of the assumption by 
Arrow of the inclusive or in Axiom I. If we would have had xRy AND yRx as a 
possibility in Axiom I, then indeed this would imply xIy. When the “inclusive 
or” interpretation of Axiom I is extended to three alternatives, we would have 
social choice solutions, for instance, of the form {xRyRz,yRxRz,zRyRx}.

An important thing to keep in mind here is that a tie refers to elements of 
the range and not to alternatives. If there are just two alternatives in an election, 
we say, sloppily, that it's possible for there to be a tie between x and y when 
what we mean (considering just preference relationships) is that there is a 
possibility of a tie between xPy and yPx which are the social choices. In other 
words, xPy and yPx are the social choices for which a tie may exist not x and y 
which are the alternatives. The same should hold true for xRy and yRx.
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Therefore, in general we consider that the range consists of all possible elements, 
{R} = {x1Rx2R...xm-1R xm}, plus elements which represent all possible combinations of
these elements. 

Paradox of Voting

According to the Condorcet method for determining the outcome of an election, 
we consider each of the alternatives in pairs, determine the winner for each pair 
and then determine the final social ordering by combining these results. For 
example, if there are 4 alternatives and 5 voters with votes abcd, abcd, adcb, cdab
and acbd, clearly, aRb (since there are 5 votes for ab and none for ba), aRc (since 
there are 4 votes for ac and 1 vote for ca), aRd (4 votes for ad and 1 for da), cRb (3
votes for cb and 1 for bc), bRd (3 votes for bd and 1 for db) and cRd (4 votes for 
cd and 1 for dc). So the winner is acbd. However, there are cases for which this 
method will not work. 

Consider the following: 3 alternatives and 3 voters. Voter 1 votes abc; 
voter 2 votes bca; and voter 3 votes cab. If we consider the alternatives pairwise 
we have 2 votes for ab and 1 for ba; 2 votes for bc and 1 vote for cb; 2 votes for ca 
and 1 for ac. Therefore, a is preferred to b is preferred to c is preferred to a, and 
we have the cycle discovered by Condorcet. This is called the “paradox of 
voting.” Clearly, any of the choices, abc, bca or cab would be incorrect.

The heart of Arrow's analysis is the criterion known as the Independence 
of Irrelevant Alternatives. Arrow (1951) states that “...suppose that an election 
system has been devised whereby each individual lists all the candidates in order
of his preference and then, by a preassigned procedure, the winning candidate is 
derived from these lists. ...Suppose an election is held, with a certain number of 
candidates in the field, each individual filing his list of preferences , and then one
of the candidates dies. Surely the social choice should be made by taking each of 
the individual's preference lists, blotting out completely the dead candidate's 
name, and considering only the orderings of the remaining names in going 
through the procedure of determining a winner.”
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Now let's reconsider the voting paradox considered above, assume that 
one candidate dies and recompute from the individual lists. Clearly, if c dies, ab 
should be  the winner since there are 2 abs to 1 ba. Similarly, if b dies, ca should 
be the winner, and, if a dies, bc should be the winner. Why shouldn't a similar 
demand be made of the social choice i.e. if a candidate dies, the new social choice
is determined by blotting out the dead candidate's name from the social choice 
list? For example, if the social choice were abcd and c died, why shouldn't the 
new social choice be abd? This is precisely the case when the Condorcet criterion 
is used in a situation where it actually works. Let's consider the example 
considered previously in which there were 4 alternatives and 5 voters with votes 
abcd, abcd, adcb, cdab and acbd. Clearly, aRb, aRc, aRd, cRb, bRd and cRd. The 
winner was acbd. Let's say c dies. We have aRb, aRd and bRd from a 
consideration of the individual lists which leads by combination to the social 
choice abd, and we have the social choice abd by considering the social choice 
acbd and blotting out c. So we get the same social choice by building the solution
from individual lists (blotting out the dead candidate) as we do by considering 
the social choice and blotting out the dead candidate.

Generalizing this notion, consider the tie solution {abc, bca, cab} for the 
voter's paradox case considered above. If c dies, we have the solution {ab, ba, ab}.
Now we need come sort of combination rule to reduce this solution down to 
either ab or ba. This is not necessary when the solution is not a tie, but is 
necessary (although Arrow doesn’t consider it) when there is a tie and the 
solution at the next lower stage contains less elements than the present stage 
solution. The rule that would produce correct results in the example under 
consideration would be: choose the element or elements whose number is 
greatest in the tie set after the appropriate alternative has been blotted out. There
are 2 abs and 1 ba in the solution so we determine the reduced solution to be ab 
which matches with our intuitive knowledge of what the solution should be. 
Similarly, we get bc and ca, respectively if a or b dies. So we can expand the 3 
stage 2 solutions, ab, bc and ca to the stage 3 solution {abc, bca, cab} and we can 
reduce the stage 3 solution {abc, bca, cab} to the 3 stage 2 solutions ab, bc and ca.

An Algorithm which Generates Social Choices 
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We now consider a general algorithm for generating solutions to the social choice
problem. In a real sense the algorithm is the SWF. We build the solution stage by 
stage starting at the binary level. We first determine all the social choices by 
pairwise comparisons of the m alternatives as determined by the individual 
voter lists. These are the social choice solution sets for stage 2, one set for each 
possible pair of alternatives. Then we build the stage 3 solution sets by taking a 
binary solution and expanding it by combining it with another alternative such 
that the expanded stage 3 solution reduces correctly to the  stage 2 solution when
each alternative is blotted out as in the above example. We do this for each 
possible combination of 3 alternatives.  We continue in this way until, if there are
m alternatives, we have generated the stage m solution.

Now for some more terminology. We call the members of a social choice 
tie set “elements.” We say that a social choice i-ary element “covers” an (i-1)-ary 
element if a letter can be blotted out of the i-ary element in such a way that the 
reduced i-ary element is identical with the (i-1)-ary element. For example, abcd 
covers abc since, if a d is blotted out of abcd, we have abc. 

A “combination rule” tells us how to combine terms when a letter is 
blotted out in a tie solution set, and the solution set at the next lower level 
contains less elements. We use the following combination rule when reducing an 
i-ary solution to an (i-1)-ary solution: 1) blot out a particular letter in each 
element of the tie solution set; 2) out of this set of elements, choose that set of 
elements as the reduced solution if, for each element in the reduced solution, 
there are more of them than there are of any element not in the reduced solution 
and there are the same number of them as there are for every other element in 
the reduced solution. Let's call this the “majority” combination rule.

For example, let us assume that the stage 3 and 4 solution sets are the 
following:

Letter Combination Stage 3 Solution Sets Stage 4 Solution Set

a,b,c abc {abcd, acdb,adbc}
a,b,d adb
a,c,d acd
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b,c,d {bcd, cdb, dbc}

In this example, if we blot out a d at stage 4, we have the modified set, 
{abc, acb, abc}. There are 2 abcs and 1 acb. Therefore the reduced solution set at 
stage 3 is abc. If we blot out a c, we have the modified set, {abd, adb, adb}. There 
are 2 adbs and 1 abd. Therefore, the reduced solution set is adb. If we blot out a 
b, we have the  modified set {acd, acd, adc}. There are 2 acds and 1 adc. 
Therefore, the reduced solution set is acd. Finally, if we blot out an a, we have 
the set {bcd, cdb, dbc} which is the solution set since all three elements occur the 
same number of times.

We generalize these notions to the following definition:

Definition 1: The Lawrence SWF is an algorithm which, for m alternatives and n 
voters, generates, for any stage i (2<i≤m),  solution sets such that, when any letter
is blotted out and using the majority combination rule, the solution set reduces to
a correct solution for stage i-1.

It should be pointed out that this is one very specific SWF which we will 
use to prove that social choice is possible by proving that it always (for any m,n) 
produces solutions which meet Arrow’s five criteria and two axioms. Other 
SWFs may exist as well.

Examples

If m=3, there are 27 possible combinations of pairwise comparisons since all 
domain elements can be collapsed down to 27 different cases. At the binary level 
we have either xRy or yRx or xTy. We work out the solutions as follows for each 
case. Each possible solution is rated to see how well it covers the solution sets at 
stage 2 (1 point for each stage 2 element covered). Since there are 3 stage 2 
solution sets each consisting of one element, a rating of 3 means that all stage 2 
elements are covered by 1 stage 3 element and that element is, hence, the stage 3 
solution. If there are no stage 3 elements with a 3 rating, then there will be more 
than 1 stage 3 element in the solution set.

Case 1: aRb, aRc, bRc
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Stage 3 Alternatives Rating

abc 3
acb 2
bac 2
bca 1
cab 1
cba 0

Solution: aRbRcCheck: Blot out a; Solution—bRc;
Blot out b; Solution—aRc;
Blot out c; Solution—aRb;

Case 2: aRb, aRc, cRb

Stage 3 Alternatives Rating

abc 2
acb 3
bac 1
bca 0
cab 2
cba 1

Solution: aRcRbCheck: Blot out a; Solution—cRb;
Blot out b; Solution—aRc;
Blot out c; Solution—aRb;

Case 3: aRb, cRa, bRc

Stage 3 Alternatives Rating

abc 2
acb 0
bac 1
bca 2
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cab 2
cba 1

Solution: {aRbRc, bRcRa, cRaRb} Check: Blot out a; Solution—bRc;
Blot out b; Solution—cRa;
Blot out c; Solution—aRb;

Case 4: aRb, cRa, cRb

Stage 3 Alternatives Rating

abc 1
acb 2
bac 0
bca 1
cab 3
cba 2

Solution: cRaRbCheck: Blot out a; Solution—cRb;
Blot out b; Solution—cRa;
Blot out c; Solution—aRb;
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Case 5: bRa, aRc, bRc

Stage 3 Alternatives Rating

abc 2
acb 1
bac 3
bca 2
cab 0
cba 1

Solution: bRaRcCheck: Blot out a; Solution—bRc;
Blot out b; Solution—aRc;
Blot out c; Solution—bRa;

Case 6: bRa, aRc, cRb

Stage 3 Alternatives Rating

abc 1
acb 2
bac 2
bca 1
cab 1
cba 2

Solution: {aRcRb, cRbRa, bRaRc} Check: Blot out a; Solution—cRb;
Blot out b; Solution—aRc;
Blot out c; Solution—bRa;
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Case 7: bRa, cRa, bRc

Stage 3 Alternatives Rating

abc 1
acb 0
bac 2
bca 3
cab 1
cba 2

Solution: bRcRaCheck: Blot out a; Solution—bRc;
Blot out b; Solution—cRa;
Blot out c; Solution—bRa;

Case 8: bRa, cRa, cRb

Stage 3 Alternatives Rating

abc 0
acb 1
bac 1
bca 2
cab 2
cba 3

Solution: cRbRaCheck: Blot out a; Solution—cRb;
Blot out b; Solution—cRa;
Blot out c; Solution—bRa;

Cases 9 through 27 are covered in Appendix 1.

For m=4, there are 64 cases not counting ties. These solutions are given in 
Appendix 2.

Proof that Algorithm Satisfies Arrow's Criteria
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 Axiom I: Connectivity

Either xRy or yRx or {xRy, yRx} by construction.

Axiom II: Transitivity

For all x, y and z, xRy and yRz imply xRz by construction; xRy and yTz 
imply xRz; xTy and yRz imply xRz; and xTy and yTz imply xTz. As long as a 
solution can be expressed in the form aQ1b Q2c...y Qm-1z where Qi  can be either R 
or T, the solution is transitive. Alternatively, any solution expressed in the form 
ab(c,d)e(f,g,h)ij is transitive.

Condition 1: Existence of a free triple

Arrow only required that some set of three alternatives be available for 
any logical ordering. Our algorithm assigns solutions for every logical ordering 
of every individual voter.

 Condition 2: Positive Association of Individual and Social Values

This Condition requires that, if every individual voter raises some 
candidate in his “preference or indifferenve” list, that candidate must not be 
lowered in the social choice. The algorithm considered here satisfies an even 
stronger criterion which is, if any individual voter raises a candidate in his 
“preference or indifference” list, that candidate must not be lowered in the social 
choice. 

Since the social choice is based on the choices made on binary pairs, let us 
consider only one voter and only two candidates, a and b. Let us say this voter 
originally preferred or was indifferent between a and b and then switched his 
vote to b over a. As long as the majority of voters still prefer or are indifferent 
between a and b after the switch, there will be no change in the social choice. 
However, there is the possibility that the change of one vote will change the 
majority to b over a. Then, at stage 2, bRa. At stage 3, if we originally had a 
unique solution, then it would have to be either abc or acb. If we originally had a 
tie solution, then it would have to be {abc, bca, cab} or {acb, cba, bac}. If we 
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originally had a unique solution, then (after the change) we would either have a 
unique solution in which b is preferred to a or a tie solution in which, in at least 
one element, b is ranked higher than a. If we originally had a tie solution, then 
(after the change) we would have a unique solution in which b is ranked higher 
than a. In any case, if a switch between two candidates by one individual voter 
affects the social choice at the binary level, it will affect the social choice at any 
other level since those social choices are built up from the binary level. 

Condition 3: The Independence of Irrelevant Alternatives

Since the solution is computed stage by stage from binary pairs, it will 
always be the same if one or more candidates dies or drops out. In fact the 
solution can be recomputed starting at stage m and going down in stage number 
as well as starting at stage 1 and going up.

Condition 4: Citizens' Sovereignty

The social choice is imposed if there is some pair of alternatives a and b 
such that the Social Choice will always be bRa even if, for every individual voter 
aRib. In the algorithm under consideration here, if the majority of voters prefers 

a to b, then aRb and vice versa by construction.

Condition 5: The Condition of Nondictatorship

There is no dictator by construction, if the majority prefers a to b, then aRb
and vice versa.

Conclusions

We have demonstrated an algorithm which generates social choices and, 
therefore, constitutes a SWF. We allow a social choice to consist of a set of tie 
elements. The algorithm is based on binary, pairwise comparisons and satisfies 
all of Arrow’s conditions and axioms as originally expounded . A companion 
paper, The Possibility of Social Choice, proves that the algorithm provides solutions
for all values of m (number of alternatives) and n (number of voters). 
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We have shown a SWF that generalizes Condorcet’s social choice rule and 
provides solutions in cases that Condorcet found to be unsolvable. Thus the 
“paradox of voting” has been resolved. It remains to prove that our method 
works not just in a limited number of cases but in fact in every case. We could 
provide a computer program which would generate all solutions for very large 
values of m (much like Fermat’s Last Theorem was shown to be true for very 
large values of the appropriate index prior to being proven generally by Andrew
Wiles in 1994), but this would not prove that our algorithm provides solutions in 
every case. Therefore, a general mathematical proof is necessary in order to 
prove finally that social choice is possible and that Arrow’s Impossibility 
Theorem is false.
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Appendix 1

Social Choice Solutions for m=3 

(Both “preferences or indifferences” and ties)

Case 9: aRb, aRc, bTc

Stage 3 Alternatives Rating

abc 2
acb 2
bac 1
bca 0
cab 1
cba 0
a(b,c) 3
(b,c)a 1
b(a,c) 0
(a,c)b 1
c(a,b) 0
(a,b)c 1
(a,b,c) 1

Solution: aRbIc  [a(b,c)] Check: Blot out a; Solution—bIc;
Blot out b; Solution—aPc;
Blot out c; Solution—aPb;

We will just present the rest of the solutions without giving the details.

Case 10: aRb, cRa, bTc Solution: cab, a(b,c), (b,c)a

Case 11: bRa, aRc, bTc Solution: bac, a(b,c), (b,c)a
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Case 12: bRa, cRa, bTc Solution: (b,c)a

Case 13: aRb, aTc, bRc Solution: abc, b(a,c), (a,c)b

Case 14: aRb, aTc, cRb Solution: (a,c)b

Case 15: bRa, aTc, bRc Solution: b(a,c)

Case 16: bRa, aTc, cRb Solution: cba, b(a,c), (a,c)b

Case 17: aTb, aRc, bRc Solution: (a,b)c

Case 18: aTb, aRc, cRb Solution: acb, (a,b)c, c(a,b)

Case 19: aTb, cRa, bRc Solution: bca, (a,b)c, c(a,b)

Case 20: aTb, cRa, cRb Solution: c(a,b)

Case 21: aRb, aTc, bTc Solution: a(b,c), (a,c)b, (a,b,c)

Case 22: bRa, aTc, bTc Solution: b(a,c), (b,c)a, (a,b,c)

Case 23: aTb, aRc, bTc Solution: a(b,c), (a,b)c, (a,b,c)

Case 24: aTb, cRa, bTc Solution: c(a,b), (b,c)a, (a,b,c)

Case 25: aTb, aTc, bRc Solution: b(a,c), (a,b)c, (a,b,c)

Case 26: aTb, aTc, cRb Solution: c(a,b), (a,c)b, (a,b,c)

Case 27: aTb, aTc, bTc Solution: (a,b,c)
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Appendix 2

Social Choice Solutions for m=4 (no ties considered)

Case 1: aRb, aRc, aRd, bRc, bRd , cRd Solution: abcd

Case 2: aRb, aRc, aRd, bRc, bRd, dRc Solution: abdc

Case 3: aRb, aRc, aRd, bRc, dRb, cRd Solution: abcd, acdb, adbc

Case 4: aRb, aRc, aRd, bRc, dRb, dRc Solution: adbc

Case 5: aRb, aRc, aRd, cRb, bRd , cRd Solution: acbd

Case 6: aRb, aRc, aRd, cRb, bRd , cRd Solution: abdc, acbd, adcb

Case 7: aRb, aRc, aRd, cRb, dRb , cRd Solution: acdb

Case 8: aRb, aRc, aRd, cRb, dRb , dRc Solution: adcb

Case 9: aRb, aRc, dRa, bRc, bRd , cRd Solution: abcd, bcda, dabc

Case 10: aRb, aRc, dRa, bRc, bRd , dRc Solution: abdc, bdac, dabc

Case 11: aRb, aRc, dRa, bRc, dRb, cRd Solution: abcd, dabc, cdab

Case 12: aRb, aRc, dRa, bRc, dRb, dRc Solution: dabc

Case 13: aRb, aRc, dRa, cRb, bRd , cRd Solution: acbd, cbda, dacb

Case 14: aRb, aRc, dRa, cRb, bRd , dRc Solution: acbd, bdac, dacb

Case 15: aRb, aRc, dRa, cRb, dRb , cRd Solution: acdb, cdab, dacb

Case 16: aRb, aRc, dRa, cRb, dRb , dRc Solution: dacb

Case 17: aRb, cRa, aRd, bRc, bRd , cRd Solution: abcd, bcad, cabd

Case 18: aRb, cRa, aRd, bRc, bRd , dRc Solution: abdc, bdca, cabd

Case 19: aRb, cRa, aRd, bRc, dRb , cRd Solution: adbc, bcad, cadb

Case 20: aRb, cRa, aRd, bRc, dRb , dRc Solution: adbc, dbca, cadb

Case 21: aRb, cRa, aRd, cRb, bRd , cRd Solution: cabd

Case 22: aRb, cRa, aRd, cRb, bRd , dRc Solution: cabd, abdc, dcab

Case 23: aRb, cRa, aRd, cRb, dRb , cRd Solution: cadb

Case 24: aRb, cRa, aRd, cRb, dRb , dRc Solution: cadb, dcab, adcb

Case 25: aRb, cRa, dRa, bRc, bRd , cRd Solution: abcd, bcda, cdab

Case 26: aRb, cRa, dRa, bRc, bRd , dRc Solution: abdc, bdca, dcab

Case 27: aRb, cRa, dRa, bRc, dRb , cRd Solution: cdab, bcda, dabc

Case 28: aRb, cRa, dRa, bRc, dRb , dRc Solution: dcab, dbca, dabc

Case 29: aRb, cRa, dRa, cRb, bRd , cRd Solution: cabd, cbda, cdab

Case 30: aRb, cRa, dRa, cRb, bRd , dRc Solution: cabd, bdca, dcab

Case 31: aRb, cRa, dRa, cRb, dRb , cRd Solution: cdab

Case 32: aRb, cRa, dRa, cRb, dRb , dRc Solution: dcab
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Case 33: bRa, aRc, aRd, bRc, bRd , cRd Solution: bacd

Case 34: bRa, aRc, aRd, bRc, bRd , dRc Solution: badc

Case 35: bRa, aRc, aRd, bRc, dRb , cRd Solution: acdb, bacd, dbac

Case 36: bRa, aRc, aRd, bRc, dRb , dRc Solution: adbc, badc, dbac

Case 37: bRa, aRc, aRd, cRb, bRd , cRd Solution: acbd, bacd, cbad

Case 38: bRa, aRc, aRd, cRb, bRd , dRc Solution: adcb, badc, cbad

Case 39: bRa, aRc, aRd, cRb, dRb , cRd Solution: acdb, bacd, cdba

Case 40: bRa, aRc, aRd, cRb, dRb , dRc Solution: adcb, badc, dcba

Case 41: bRa, aRc, dRa, bRc, bRd , cRd Solution: bacd, bcda, bdac

Case 42: bRa, aRc, dRa, bRc, bRd , dRc Solution: bdac

Case 43: bRa, aRc, dRa, bRc, dRb , cRd Solution: bacd, cdba, dbac

Case 44: bRa, aRc, dRa, bRc, dRb , dRc Solution: dbac

Case 45: bRa, aRc, dRa, cRb, bRd , cRd Solution: acbd, bdac, cbda

Case 46: bRa, aRc, dRa, cRb, bRd , dRc Solution: dacb, bdac, cbda

Case 47: bRa, aRc, dRa, cRb, dRb , cRd Solution: acdb, dbac, cdba

Case 48: bRa, aRc, dRa, cRb, dRb , dRc Solution: dacb, dbac, dcba

Case 49: bRa, cRa, aRd, bRc, bRd , cRd Solution: bcad

Case 50: bRa, cRa, aRd, bRc, bRd , dRc Solution: badc, bcad, bdca

Case 51: bRa, cRa, aRd, bRc, dRb , cRd Solution: cadb, bcad, dbca

Case 52: bRa, cRa, aRd, bRc, dRb , dRc Solution: adbc, bcad, dbca

Case 53: bRa, cRa, aRd, cRb, bRd , cRd Solution: cbad

Case 54: bRa, cRa, aRd, cRb, bRd , dRc Solution: badc, cbad, dcba

Case 55: bRa, cRa, aRd, cRb, dRb , cRd Solution: cadb, cbad, cdba

Case 56: bRa, cRa, aRd, cRb, dRb , dRc Solution: adcb, cbad, dcba

Case 57: bRa, cRa, dRa, bRc, bRd , cRd Solution: bcda

Case 58: bRa, cRa, dRa, bRc, bRd , dRc Solution: bdca

Case 59: bRa, cRa, dRa, bRc, dRb , cRd Solution: bcda, cdba, dbca

Case 60: bRa, cRa, dRa, bRc, dRb , dRc Solution: dbca

Case 61: bRa, cRa, dRa, cRb, bRd , cRd Solution: cbda

Case 62: bRa, cRa, dRa, cRb, bRd , dRc Solution: bdca, dcba, cbda

Case 63: bRa, cRa, dRa, cRb, dRb , cRd Solution: cdba

Case 64: bRa, cRa, dRa, cRb, dRb , dRc Solution: dcba
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