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Abstract 
 
Arrow’s Social Choice Impossibility Theorem is disproved by demonstrating that 

Arrow’s treatment of tie situations was incorrect. Invalidating Arrow’s proof in itself 

does not prove that Social Choice is possible. The possibility of Social Choice is proven 

by presenting an algorithm which represents a social welfare function that maps the 

domain of all possible combinations of individual choices into corresponding social 

choices. It is proven that the algorithm produces correct solutions for any number of 

alternatives and any number of voters which meet Arrow’s criteria.  

 

 

 

Key Words: social choice, Arrow, Condorcet, voting, paradox of voting, algorithm, 

social welfare function, impossibility theorem
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Introduction 

 

In 1785 The Marquis de Condorcet (Granger [1989], McLean and Hewitt [1994]) 

published his Essai (1785) in which he pointed out the problems associated with an 

election in which there are three or more candidates. This has become known as the 

paradox of voting. Condorcet and the American President, Thomas Jefferson, were 

collaborators in the production of both the French and American Constitutions. 

Condorcet lost his life in the French Revolution because he left his secure hiding place 

when he learned that his host was subject to the death penalty for harboring him. He 

was preceded in the theory of elections by a few years by his friend Jean-Charles de 

Borda (1781) who proposed the rank-order count method of voting. The French 

Enlightenment philosophers hoped to “carry the methods of rigorous and mathematical 

thought beyond the physical and into the realms of the human sciences.” (Black[1958]) 

 

Over the years there have been various writers that have contributed to the 

theory of elections including E. J. Nanson (1907) and the Reverend C. L. Dodgson 

(Lewis Carroll) (1873, 1874, 1876). In 1951 Nobel Laureate Kenneth J. Arrow published 

Social Choice and Individual Values in which he explored the question of whether or not 

individual preferences could be aggregated in some rational way in order to form a 

social choice. He postulated five rational and ethical criteria and two axioms that such a 

social welfare function should meet, and then proceeded to prove that no such social 

welfare function existed. This theorem is known as Arrow's Impossibility Theorem, and 

an impressive literature concerning itself with what has come to be known as Social 

Choice theory has developed in the last  forty -six years. At least one author considers 
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that Arrow's Theorem “has a good claim to be considered the outstanding problem in 

the philosophy of economics” (MacKay [1980]). 

 

Some of the literature has been concerned with finding a way around Arrow's 

basic result that no rational social choice is possible by relaxing one or more of his 

criteria (Sen [1970], Riley [1988], Murakami [1968]). Arrow's theorem has important 

political, economic and social implications since, if indeed no rational way to aggregate 

individual preferences is possible and Pareto optimality is the best that can be achieved, 

then a populist democracy which closely reflects the will of the people becomes 

impossible and free market capitalism acquires a theoretically endorsed superiority 

over any kind of populist socialistic or democratic economic system. Liberal or 

Madisonian democracy in which the purpose of voting is just to elect leaders and 

lawmakers becomes all that is attainable while populist or direct democracy in which 

social policies are decided upon directly by voting becomes theoretically unfeasible. The 

notion of electronic democracy in which voters vote directly on issues from computer 

terminals and then supercomputers tally the results [what might be called an 

Information Age Utopia] is not theoretically acceptable. These realizations have 

produced pessimism and even nihilism among proponents of welfare economics 

(Bergson, 1966). However, advocates of democratic voting systems should be equally 

concerned as Arrow's result tarnishes the validity of democratic elections as well (Riker 

[1982], Schofield [1985]). 

 

In this paper we will present an algorithm which provides a solution for the 

social choice problem for any number of alternatives without diluting Arrow's five 

criteria and two axioms for social choice. In fact we strengthen them considerably. We 

also give a more rigorous statement of those criteria. We prove that the algorithm works 

for all values of m, the number of alternatives and for any number of voters, n. Our 
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method is ordinal (rather than cardinal), based on pair-wise comparisons and 

independent of irrelevant alternatives. It is shown in this paper that the key to opening 

the door of social choice is the proper consideration of tie solutions. 
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Notation 
 
We follow conventional notation. Let us assume that we have a society composed of n 
voters. For identification purposes, we can number them from 1 to n, 1< i ≤ n. We will 
refer to the ith individual. We assume an alternative set, S, consisting of m alternatives: 
a, b, c... . Let the set {x1, x2...xm} consist of some permutation of the alternative set 
{a,b,c...}. Arrow uses an R notation, which we will follow, which means “is preferred or 
is indifferent to.” To indicate that voter i prefers a to b or is indifferent between a and b, 
we would write aRib. We assume that each voter has a “preference or indifference” 
relationship, Ri, over the alternative set as follows: 

 
Ri = xi1Rixi2Ri...xim-1Ri xim 

where 
  xik represents the kth “preference or indifference” of the ith voter.  

 
We will use a shorthand notation as follows: abcd for aRib Ric Rid. 
 

 
The Social Welfare Function 
 
A function is a mapping from a set of elements called the domain to a set of elements 
called the range in such a way that each element of the domain is connected with not 
more than one element of the range. Now the mapping from domain to range can be in 
such a way that for every element of the range there is at most one corresponding 
element of the domain (one-to-one or injective); for every element of the range there is 
one or more corresponding elements of the domain (onto or surjective) or for every 
element of the range there is one and only one corresponding element of the domain 
(one-to-one correspondence or bijective).  

 
The Social Welfare Function (SWF) maps the domain which consists of all 

possible combinations of Ri, 1≤ i ≤ n, votes onto the range, each element of which is a 
possible social “preference or indifference” relationship, R, which is one of the set of 
relationships, Ri, available to the individual voter. The domain can be represented as 
the set of all possible combinations  
{ R1, R2,... Rn} where each Ri can take on one of m! values. (If there are m alternatives, 
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there are m! permutations of those alternatives.) There are thus (m!)n elements in the 
domain. The corresponding range would be the set of values 

 
{R} = {x1Rx2R...xm-1R xm} 

 

where the set {x1, x2...xm} can take on m! possible values. The set {R}, the possible social 
choices, is identical to the set { Ri} available to any individual. 

At this point we are in complete agreement with Arrow's definition of a SWF 
which states: 

 
“By a social welfare function will be meant a process or rule which, for each set 

of individual orderings R1,...,Rn for alternative social states (one ordering for each 
individual), states a corresponding social ordering of alternative social states, R.” (1951). 

 
In addition, we consider the possibility of social choices which are tie sets. To 

motivate our discussion of tie sets, we take as an example the binary case of two 
alternatives, a and b, and n voters. This is the typical, traditional voting situation. The 
individual voters vote either aPib or bPia where aPib means voter i prefers a to b. The 
corresponding social choices are aPb and bPa. If n is an even number and n/2 voters 
vote aPib  while the other n/2 voters vote bPia, then we have a tie which we indicate 
{aPb,bPa} or aTb. Note that aTb = bTa. Therefore, the set of range elements that can be 
considered social choices are aPb, bPa and  the tie set, {aPb,bPa}.  

 
Let N(a,b) be the number of voters who vote aPib , and N(b,a) be the number 

who vote bPia. The rule connecting domain and range elements is as follows: If N(a,b) > 
N(b,a), the social choice is aPb. If N(b,a) > N(b,a), the social choice is bPa. If N(a,b) = 
N(b,a) (which can only happen if n is even), the social choice is a tie {aPb,bPa}. Clearly, 
this element needs to be considered in the range as a distinct possibility. 

 
Now let us consider preferences and indifferences. The individual indifference 

realationship is aIib which means the ith voter is indifferent between a and b while the 
social indifference relationship is aIb. The individual now can vote in one of three ways: 
aPib, bPia or aIib. The social choices are aPb, bPa, {aPb,bPa} ≡ aTb and aIb. Note that a 
distinction needs to be made between a social indifference and a social tie which are 
philosophically distinct. Now a particular SWF might map the case, N(a,b) = N(b,a), 
refered to above, into the social choice aIb while another SWF might map the same case 
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into aTb. It is important to preserve the distinction between these two cases so that the 
same options are available in the world in which P and I are possible as are available in 
the world in which just P is possible. 

 
Arrow (1951) claims to treat ties. He asserts: “...Axioms I and II do not exclude 

the possibility that for some distinct [alternatives] x and y, both xRy and yRx. A strong 
ordering, on the other hand, is a ranking in which no ties are possible.” Arrow is 
implying here that a social choice could consist of the tie set {xRy, yRx}. Clearly, this 
would not apply to individual choice since each individual would submit his vote in the 
form xRiy or yRix but not both. It should be pointed out that the tie set  {xRy, yRx} ≡ 
xTy is not the same as indifference and does not imply the social choice xIy. Analagous 
to the case considered previously in which half the voters prefered a to b, half b to a and 
the social choice was {aPb,bPa}, the situation here might be that half the voters vote xRiy 
and half vote xRiy. The social choice  {xRy, yRx} needs to be available as a distinct and 
logically separate possibility from the social choice xIy. In fact, xIy might only be 
appropriate if all the voters were indifferent between a and b but not appropriate if half 
the voters prefered a to b and half, b to a. 

 
Arrow’s (1951) proof that social choice is possible for two alternatives is 

questionable because he doesn’t deal with the tie case, N(x,y) = N(y,x), properly. Arrow 

states: “DEFINITION 9: By the method of majority decision is meant the social welfare 

function in which xRy holds if and only if the number of individuals such that xRi y is at least as 

great as the number of individuals such that yRi x.” 

 
Therefore, the case in which N(x,y) = N(y,x) would be decided xRy. But this 

violates the principal of neutrality or self-duality that requires every alternative to be 
treated in exactly the same way. Murakami (1968) states: “As long as we are considering 
the world of two alternatives, self-duality can be regarded as impartiality or neutrality 
with respect to alternatives. A self-dual social decision function has exactly the same 
structure regarding issue x against y as it does regarding issue y against x.” Self-duality 
is a stronger version of Arrow’s Condition 3 — Citizen’s Sovereignty, but one would 
think that, since Arrow provided for the possibility of the tie set, {xRy, yRx}, in Axiom I, 
it should be called for in this case. There is no reason to prefer x over y in this situation 
by calling for xRy as the solution in the tie case as opposed to yRx. You can’t have it 
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both ways. If you aren’t going to allow the existence of tie sets as legitimate social 
choices, then there is no legitimate social choice in the binary case either. On the other 
hand, if tie sets are acceptable, then they must be admitted as potential social choice 
solutions for cases such that n > 2, and this will lead, as we shall show, to a disproof of 
Arrow’s Impossibility Theorem. 

 
In showing connectivity Arrow states: “Clearly, always either N(x,y) ≥ N(y,x) or 

N(y,x) ≥ N(x,y), so that, for all x and y, xRy or yRx.” This is an incorrect statement. One 
could say correctly that ‘either N(x,y) ≥ N(y,x) or N(y,x) > N(x,y)’ or  ‘either N(x,y) > 
N(y,x) or N(y,x) ≥ N(x,y)’ or ‘either N(x,y) > N(y,x) or N(y,x) > N(x,y) or N(y,x) = 
N(x,y).’ The latter restatement then would suggest the conclusion that either xRy or yRx 
or {xRy, yRx}. However, Arrow’s definition of majority rule would have to be changed 
to allow for the tie case. With these changes one could then go on to prove that social 
choice is indeed possible for the case of two alternatives, but not allowing the 
acceptance of the tie case leads to the conclusion that social choice is impossible for the 
tie case as well. 

 
Arrow’s statement that in a “strong ordering ... no ties are possible” violates the 

common sense notion considered above in which (when only preferences are 
considered) n/2 voters prefer a to b and n/2 voters prefer b to a. Clearly, this is a tie, and 
clearly we cannot have the social choice aIb since the indifference operator is not a part 
of the domain or the range. The social choice must be {aPb, bPa}. 

 
In accordance with Arrow’s Axiom I which states: “For all x and y, either xRy or 

yRx” and about which he states: “Note also that the word ‘or’ in the statement of Axiom 
I does not exclude the possibility of both xRy and yRx.”, the social choice tie set, {xRy, 
yRx}, is made possible because of the assumption by Arrow of the inclusive or in Axiom 
I. If we would have had xRy AND yRx as a possibility in Axiom I, then indeed this 
would imply xIy. When the “inclusive or” interpretation of Axiom I is extended to three 
alternatives, we would have social choice solutions, for instance, of the form 
{aRbRc,bRaRc,cRbRa}. For example, let us imagine a situation in which there are 3 
alternatives and 6 voters. There are 6 possible choices in the choice set: 
{aRbRc,aRcRb,bRaRc,bRcRa,cRaRb,cRbRa}. Let us assume that each voter votes for a 
different element of this set. There is then one vote for each possible social choice. The 
common sense solution is a tie among all the possible choices. Similarly, there are 24 
possible choices for 4 alternatives, and, for the case of 24 voters each voting for a 
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different choice, common sense would dictate a tie among all the possible social choices. 
A similar case can be made for m=5, 6, ... . These are the broadest conceivable tie sets, 
and will be called maximal tie sets. Tie sets involving less than the total number of 
choices are also conceivable. 

 
An important thing to keep in mind here is that a tie refers to elements of the 

range and not to alternatives. If there are just two alternatives in an election, we say, 
sloppily, that it's possible for there to be a tie between x and y when what we mean 
(considering just preference relationships) is that there is a possibility of a tie between 
xPy and yPx which are the social choices. In other words, xPy and yPx are the social 
choices for which a tie may exist not x and y which are the alternatives. Similarly, for 
xRy and yRx, the tie is between xRy and yRx. 

 
Therefore, in general, we consider that the range consists of all possible elements, {R} = 

{x1Rx2R...xm-1R xm}, plus elements which represent all possible combinations of these 
elements which are the tie solutions. 
 

We take as the range of the SWF the power set (Stoll[1979]) of the set of all 
possible rankings, ρ(A), where  

 
 A = {R1,R2,...,Rq } 
 

The set  {R1,R2,...,Rq } represents every possible ranking of the alternatives a,b,c... . q = 
m!. ρ(A) is the set of all possible subsets of A. If the vote is split precisely equally among 
every possible ranking, then the social choice would be equal to the tie set A. If there is 
a singular solution, then the social choice is equal to one of the elements of the set A. 
Other subsets of A would represent tie solutions of varying degrees. 
 
 
Paradox of Voting 
 
According to the Condorcet method for determining the outcome of an election, we 
consider each of the alternatives in pairs, determine the winner for each pair and then 
determine the final social ordering by combining these results. For example, if there are 
4 alternatives and 5 voters with votes abcd, abcd, adcb, cdab and acbd, clearly, aRb 
(since there are 5 votes for ab and none for ba), aRc (since there are 4 votes for ac and 1 
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vote for ca), aRd (4 votes for ad and 1 for da), cRb (3 votes for cb and 1 for bc), bRd (3 
votes for bd and 1 for db) and cRd (4 votes for cd and 1 for dc). So the winner is acbd. 
However, there are cases for which this method will not work.  

 
Consider the following: 3 alternatives and 3 voters. Voter 1 votes abc; voter 2 

votes bca; and voter 3 votes cab. If we consider the alternatives pairwise we have 2 
votes for ab and 1 for ba; 2 votes for bc and 1 vote for cb; 2 votes for ca and 1 for ac. 
Therefore, a is preferred to b is preferred to c is preferred to a, and we have the cycle 
discovered by Condorcet. This is called the “paradox of voting.” Clearly, any of the 
choices, abc, bca or cab would be incorrect. 

 
The heart of Arrow's analysis is the criterion known as the Independence of 

Irrelevant Alternatives. Arrow (1951) states that “...suppose that an election system has 
been devised whereby each individual lists all the candidates in order of his preference 
and then, by a preassigned procedure, the winning candidate is derived from these lists. 
...Suppose an election is held, with a certain number of candidates in the field, each 
individual filing his list of preferences , and then one of the candidates dies. Surely the 
social choice should be made by taking each of the individual's preference lists, blotting 
out completely the dead candidate's name, and considering only the orderings of the 
remaining names in going through the procedure of determining a winner.” 

 
Now let's reconsider the voting paradox considered above, assume that one 

candidate dies and recompute from the individual lists. Clearly, if c dies, ab should be  
the winner since there are 2 abs to 1 ba. Similarly, if b dies, ca should be the winner, 
and, if a dies, bc should be the winner. Why shouldn't a similar demand be made of the 
social choice i.e. if a candidate dies, the new social choice is determined by blotting out 
the dead candidate's name from the social choice list? For example, if the social choice 
were abcd and c died, why shouldn't the new social choice be abd? This is precisely the 
case when the Condorcet criterion is used in a situation where it actually works. Let's 
consider the example considered previously in which there were 4 alternatives and 5 
voters with votes abcd, abcd, adcb, cdab and acbd. Clearly, aRb, aRc, aRd, cRb, bRd and 
cRd. The winner is acbd. Let's say c dies. We have aRb, aRd and bRd from a 
consideration of the individual lists which leads by combination to the social choice 
abd, and we have the social choice abd by considering the social choice acbd and 
blotting out c. So we get the same social choice by building the solution from individual 
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lists (blotting out the dead candidate) as we do by considering the social choice and 
blotting out the dead candidate. 

 
Generalizing this notion, consider the tie solution {abc, bca, cab} for the voter's 

paradox case considered above. If c dies, we have the solution {ab, ba, ab}. Now we 
need some sort of rule for combining these elements in order to reduce this solution 
down to either ab or ba. This is not necessary when the solution is not a tie, but is 
necessary (although Arrow doesn’t consider it) when there is a tie and the solution at 
the next lower stage contains fewer elements than the present stage solution. The rule 
that would produce correct results in the example under consideration would be: 
choose the element or elements whose number is greatest in the tie set after the 
appropriate alternative has been blotted out. There are 2 abs and 1 ba in the solution so 
we determine the reduced solution to be ab which matches with the solution which is 
built up from the individual binary choices. Similarly, we get bc and ca, respectively if a 
or b dies. So we can expand the 3 stage 2 solutions, ab, bc and ca to the stage 3 solution 
{abc, bca, cab} and we can reduce the stage 3 solution {abc, bca, cab} to the 3 stage 2 
solutions ab, bc and ca. 

 
 
An Algorithm which Generates Social Choices  
 
We now consider a general algorithm for generating solutions to the social choice 
problem. In a real sense the algorithm is the SWF. We build the solution stage by stage 
starting at the binary level. We first determine all the social choices by pairwise 
comparisons of the m alternatives as determined by the individual voter lists. These are 
the social choice solution sets for stage 2, one set for each possible pair of alternatives. 
Then we build the stage 3 solution sets by taking a binary solution and expanding it by 
combining it with another alternative such that the expanded stage 3 solution reduces 
correctly to the  stage 2 solution when each alternative is blotted out as in the above 
example. We do this for each possible combination of 3 alternatives.  We continue in 
this way until, if there are m alternatives, we have generated the stage m solution. 

 
Now for some more terminology. We call the members of a social choice tie set 

“elements.” We say that a social choice i-ary element “covers” an (i-1)-ary element if a 
letter can be blotted out of the i-ary element in such a way that the reduced i-ary 
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element is identical with the (i-1)-ary element. For example, abcd covers abc since, if a d 
is blotted out of abcd, we have abc.  

 
A “combination rule” tells us how to combine terms when a letter is blotted out 

in a tie solution set, and the solution set at the next lower level contains fewer elements. 
We use the following combination rule when reducing an i-ary solution to an (i-1)-ary 
solution: 1) blot out a particular letter in each element of the tie solution set; 2) out of 
this set of elements, choose that set of elements as the reduced solution if, for each 
element in the reduced solution, there are more of them than there are of any element 
not in the reduced solution and there are the same number of them as there are for 
every other element in the reduced solution. Let's call this the “majority” combination 
rule. 

 
For example, let us assume that the stage 3 and 4 solution sets are the following: 
 

Letter Combination Stage 3 Solution Sets Stage 4 Solution Set 
 

 a,b,c    abc   {abcd, acdb,adbc} 
a,b,d    adb 
a,c,d    acd 
b,c,d    {bcd, cdb, dbc} 
 
In this example, if we blot out a d at stage 4, we have the modified set, {abc, acb, 

abc}. There are 2 abcs and 1 acb. Therefore the reduced solution set at stage 3 is abc. If 
we blot out a c, we have the modified set, {abd, adb, adb}. There are 2 adbs and 1 abd. 
Therefore, the reduced solution set is adb. If we blot out a b, we have the  modified set 
{acd, acd, adc}. There are 2 acds and 1 adc. Therefore, the reduced solution set is acd. 
Finally, if we blot out an a, we have the set {bcd, cdb, dbc} which is the solution set since 
all three elements occur the same number of times. 

 
We generalize these notions to the following definition: 
 

Definition 1: The Lawrence SWF is an algorithm which, for m alternatives and n voters, 
generates, for any stage i (2<i≤m),  solution sets such that, when any letter is blotted out 
and using the majority combination rule, the solution set reduces to a correct solution 
for stage i-1. 
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It should be pointed out that this is one very specific SWF which we will use to 

prove that social choice is possible by proving that it always (for any m,n) produces 
solutions which meet Arrow’s five criteria and two axioms. Other SWFs may exist as 
well. 
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Examples 
 
If m=3, there are 27 possible combinations of pairwise comparisons since all domain 
elements can be collapsed down to 27 different cases. At the binary level we have either 
xRy or yRx or xTy. We work out the solutions as follows for each case. Each possible 
solution is rated to see how well it covers the solution sets at stage 2 (1 point for each 
stage 2 element covered). Since there are 3 stage 2 solution sets each consisting of one 
element, a rating of 3 means that all stage 2 elements are covered by 1 stage 3 element 
and that element is, hence, the stage 3 solution. If there are no stage 3 elements with a 3 
rating, then there will be more than 1 stage 3 element in the solution set. 

 
Case 1: aRb, aRc, bRc 
 
 Stage 3 Choices   Rating 
 
  abc     3 
  acb     2 
  bac     2 
  bca     1 
  cab     1 
  cba     0 
 
Solution: aRbRc Check:  Blot out a; Solution—bRc; 
     Blot out b; Solution—aRc; 
     Blot out c; Solution—aRb; 
 
Case 2: aRb, aRc, cRb 
 
 Stage 3 Choices   Rating 

   
  abc     2 
  acb     3 
  bac     1 
  bca     0 
  cab     2 
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  cba     1 
 
Solution: aRcRb Check:  Blot out a; Solution—cRb; 
     Blot out b; Solution—aRc; 
     Blot out c; Solution—aRb; 
 
Case 3: aRb, cRa, bRc 
 
 Stage 3 Choices   Rating 

   
  abc     2 
  acb     0 
  bac     1 
  bca     2 
  cab     2 
  cba     1 
 
Solution: {aRbRc, bRcRa, cRaRb} Check: Blot out a; Solution—bRc; 
       Blot out b; Solution—cRa; 
      Blot out c; Solution—aRb; 
 
Case 4: aRb, cRa, cRb 
 
 Stage 3 Choices   Rating 

   
  abc     1 
  acb     2 
  bac     0 
  bca     1 
  cab     3 
  cba     2 
 
Solution: cRaRb Check:  Blot out a; Solution—cRb; 
     Blot out b; Solution—cRa; 
     Blot out c; Solution—aRb; 
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Case 5: bRa, aRc, bRc 
 
 Stage 3 Choices   Rating 

   
  abc     2 
  acb     1 
  bac     3 
  bca     2 
  cab     0 
  cba     1 
 
Solution: bRaRc Check:  Blot out a; Solution—bRc; 
     Blot out b; Solution—aRc; 
     Blot out c; Solution—bRa; 
 
Case 6: bRa, aRc, cRb 
 
 Stage 3 Choices   Rating 
   
  abc     1 
  acb     2 
  bac     2 
  bca     1 
  cab     1 
  cba     2 
 
Solution: {aRcRb, cRbRa, bRaRc} Check: Blot out a; Solution—cRb; 
       Blot out b; Solution—aRc; 
      Blot out c; Solution—bRa; 
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Case 7: bRa, cRa, bRc 
 
 Stage 3 Choices   Rating 

   
  abc     1 
  acb     0 
  bac     2 
  bca     3 
  cab     1 
  cba     2 
 
Solution: bRcRa Check:  Blot out a; Solution—bRc; 
     Blot out b; Solution—cRa; 
     Blot out c; Solution—bRa; 
 
Case 8: bRa, cRa, cRb 
 
 Stage 3 Choices   Rating 

   
  abc     0 
  acb     1 
  bac     1 
  bca     2 
  cab     2 
  cba     3 
 
Solution: cRbRa Check:  Blot out a; Solution—cRb; 
     Blot out b; Solution—cRa; 

    Blot out c; Solution—bRa; 
 

Cases 9 through 27 are covered in Appendix 1. 
 
For m=4, there are 64 cases not counting ties. These solutions are given in Appendix 2. 
 
Proof that Algorithm Satisfies Arrow's Criteria 



 20 

 
 Axiom I: Connectivity 
 

Either xRy or yRx or {xRy, yRx} by construction. 
 

Axiom II: Transitivity 
 

For all x, y and z, xRy and yRz imply xRz by construction; xRy and yTz imply 
xRz; xTy and yRz imply xRz; and xTy and yTz imply xTz. As long as a solution can be 
expressed in the form aQ1b Q2c...y Qm-1z where Qi  can be either R or T, the solution is 
transitive. Alternatively, any solution expressed in the form ab(c,d)e(f,g,h)ij where (c,d) 
denotes cTd is transitive. 
 
Condition 1: Existence of a free triple 
 

Arrow only required that some set of three alternatives be available for any 
logical ordering. Our algorithm assigns solutions for every logical ordering of every 
individual voter. 

 
 Condition 2: Positive Association of Individual and Social Values 
 

This Condition requires that, if every individual voter raises some candidate in 
his “preference or indifferenve” list, that candidate must not be lowered in the social 
choice. The algorithm considered here satisfies an even stronger criterion which is, if 
any individual voter raises a candidate in his “preference or indifference” list, that 
candidate must not be lowered in the social choice.  

 
Since the social choice is based on the choices made on binary pairs, let us 

consider only one voter and only two candidates, a and b. Let us say this voter 
originally preferred or was indifferent between a and b and then switched his vote to b 
over a. As long as the majority of voters still prefer or are indifferent between a and b 
after the switch, there will be no change in the social choice. However, there is the 
possibility that the change of one vote will change the majority to b over a. Then, at 
stage 2, bRa. At stage 3, if we originally had a unique solution, then it would have to be 
either abc or acb. If we originally had a tie solution, then it would have to be {abc, bca, 
cab} or {acb, cba, bac}. If we originally had a unique solution, then (after the change) we 
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would either have a unique solution in which b is preferred to a or a tie solution in 
which, in at least one element, b is ranked higher than a. If we originally had a tie 
solution, then (after the change) we would have a unique solution in which b is ranked 
higher than a. In any case, if a switch between two candidates by one individual voter 
affects the social choice at the binary level, it will affect the social choice at any other 
level since those social choices are built up from the binary level.  

 
Condition 3: The Independence of Irrelevant Alternatives 
 

Since the solution is computed stage by stage from binary pairs, it will always be 
the same if one or more candidates dies or drops out. In fact the solution can be 
recomputed starting at stage m and going down in stage number as well as starting at 
stage 1 and going up. 
 
Condition 4: Citizens' Sovereignty 
 

The social choice is imposed if there is some pair of alternatives a and b such that 
the Social Choice will always be bRa even if, for every individual voter aRib. In the 
algorithm under consideration here, if the majority of voters prefers a to b, then aRb 
and vice versa by construction. 

 
Condition 5: The Condition of Nondictatorship 
 

There is no dictator by construction, if the majority prefers or is indifferent to a 
over b, then aRb and vice versa. 

 
 
Formal Explication of the Algorithm 

 
The following is a formal delineation of the steps involved in the algorithm. We 

assume we have the correct solutions for the (m-1)th stage  
(m > 2) and want to develop the solution for the mth stage.  

 
1) Label all the alternatives alphanumerically such as a, b, c etc. 
2) List all the (m-1)th stage letter combinations in lexicographical order. 
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3) For each (m-1)th stage letter combination, list the (m-1)th stage solution next to 
it forming the (m-1)th stage winning matrix. The elements of each solution are 
written, for example, ab(c,d) etc. 
4) Consider each element in the winning matrix in lexicographical order i.e. from 
left to right columnwise and from top to bottom rowwise. 
5) For each element in order list the possible mth stage elements by inserting the 
remaining letter at the end of the element to form the first mth stage element and 
then moving that letter one place to the left to form the next element etc. This 
represents the lexicographical ordering of the mth stage elements. After this 
process has been completed, the remaining letter is inserted in the same way 
from right to left again forming elements with possible tie alternatives. 
6) For each possible mth stage element assign a rating which is computed by 
calculating the number of (m-1)th stage elements that are “covered” by this 
element where “covered” has been defined previously. 
7) Choose that mth stage element with the highest rating as a potential element 
of the mth stage winning set. If there is a tie in the ratings consider the first 
element of the tie in lexicographical order. 
8) Keep a list of the (m-1)th stage elements that are covered as they occur as a 
result of the inclusion of a potential mth stage element in the winning set. For 
each “covered” element, keep a record as to how many times it has been covered. 
8) Make sure that, when the potential element are considered to be part of the 
winning solution, no (m-1)th stage element is covered more than twice. 
9) If a potential stage m element results in a  (m-1)th stage element being 
covered more than twice, then consider the next element in lexicographical order 
of the same rating or next lower rating. Go back to step 1. 
10)  Check to see that, upon reducing winning set from stage 5 to stage 4, there 
are no elements that are not in the stage 4 winning matrix that are covered more 
than once. 
11) If there are elements not in the winning matrix that are covered more than 
once, the potential element must be thrown out. Consider the next element in 
lexicographical order of the same or next lower rating. Go back to step 1. 
12) If all potential stage 5 elements have been considered and no suitable element 
has been found, then go back to the last element included in the winning set that 
could be changed in such a way as to result in the least number of changes to the 
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winning set. Change that element to another one thus allowing one of the 
presently considered elements to be used in the winning set. 
13) Add the potential element to the winning set. 
14) Go back to step 1 and continue until every (m-1)th stage element has been 
considered. 
15) If some (m-1)th stage elements have not been covered twice, start over 
considering those particular elements in lexicographical order. 
16) Continue until all (m-1)th stage elements have been covered exactly twice. 
 
An example worked out for the case m=5 is given in Appendix 3. 
 
The proof that the algorithm works in every case is given in Appendix 4. 

 
 
New Directions 
 
Since many of the solutions are ties, we may use an additional criterion to choose 
among them. In fact we could introduce the concept of “digital utility” which would be 
a measure of the “goodness of fit” of each of the elements of the tie set. We could 
measure for each individual voter the goodness of fit of his preference list with the 
social choice by measuring the “distance,” for each alternative, between the position of 
that alternative in the voter’s preference list and the position of that alternative in the 
social choice. For instance, if voter i places alternative a 2nd in his list and the social 
choice places a 4th, there is a distance of 2 between the individual choice and the social 
choice. Summing over all alternatives and all individuals, we could get a measure of the 
digital utility for each element of the tie set. The element with the lowest summation 
would be the one with the highest digital utility, and, therefore, could be chosen as the 
social choice. 
 

There is reason to believe that the social choices produced by the algorithm we 
have presented are stable in that it doesn’t pay for any voter to vote insincerely. We 
quote Murakami (1968): “Therefore, if a democracy is based on pairwise comparisons, 
the outcome of sincere individual decisions is, if it exists at all, always stable. Any 
insincere or strategic move cannot improve the situation for any individual. This is one 
of the essential features of democracy based on pairwise comparison. Therefore, insofar 
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as a democracy is based on pairwise comparisons, a distinction between individual 
decisions and individual preferences may not be so important.” 

 
The aspect of pairwise comparisons also opens another door: that of probabilistic 

voting systems based upon limited information from each individual. Instead of 
millions of voters exhaustively ranking hundreds of alternatives, we can envision a 
voting system in which different voters are assigned different pairs of candidates to be 
ranked on a pairwise or a partial list ranking basis. Then all this information can be 
integrated to form the social choice with the probability of error made as low as desired 
by increasing the number of pairwise or partially ordered lists considered. The results 
could be compared with non-probabilistic voting systems for accuracy of results and 
effort (on the voters’ parts) expended. 
 
 
Conclusions 
 
We have shown that Arrow’s Impossibility Theorem is flawed since it doesn’t handle tie 
solutions correctly. We have demonstrated an algorithm which generates social choices 
and, therefore, constitutes a SWF. We allow a social choice to consist of a set of tie 
elements. The algorithm is based on binary, pairwise comparisons and satisfies a 
strengthened version of Arrow’s conditions and axioms as originally expounded . The 
social choices for all combinations of two alternatives are first determined. Then the 
social choices for 3, 4, ... alternatives are built up stage by stage. We have proven that 
the algorithm provides solutions for all values of m (number of alternatives) and n 
(number of voters). Therefore, Condorcet’s “paradox of voting” has been resolved and 
Social Choice is possible. 
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Appendix 1 
 
 
Social Choice Solutions for m=3  
 
(Both “preferences or indifferences” and ties) 
 
Case 9: aRb, aRc, bTc 
 
 Stage 3 Alternatives  Rating 

   
  abc     2 
  acb     2 
  bac     1 
  bca     0 
  cab     1 
  cba     0 
  a(b,c)     3 
  (b,c)a     1 
  b(a,c)     0 
  (a,c)b     1 
  c(a,b)     0 
  (a,b)c     1 
  (a,b,c)     1 
 
 
 
Solution: aRbIc  [a(b,c)] Check: Blot out a; Solution—bIc; 
      Blot out b; Solution—aRc; 
     Blot out c; Solution—aRb; 
 
 
 



 26 

We will just present the rest of the solutions without giving the details. 
 
Case 10: aRb, cRa, bTc  Solution:  cab, a(b,c), (b,c)a 
Case 11: bRa, aRc, bTc  Solution:  bac, a(b,c), (b,c)a 
Case 12: bRa, cRa, bTc  Solution:  (b,c)a 
Case 13: aRb, aTc, bRc  Solution:  abc, b(a,c), (a,c)b 
Case 14: aRb, aTc, cRb  Solution:  (a,c)b 
Case 15: bRa, aTc, bRc  Solution:  b(a,c) 
Case 16: bRa, aTc, cRb  Solution:  cba, b(a,c), (a,c)b 
Case 17: aTb, aRc, bRc  Solution:  (a,b)c 
Case 18: aTb, aRc, cRb  Solution:  acb, (a,b)c, c(a,b) 
Case 19: aTb, cRa, bRc  Solution:  bca, (a,b)c, c(a,b) 
Case 20: aTb, cRa, cRb  Solution:  c(a,b) 
Case 21: aRb, aTc, bTc  Solution:  a(b,c), (a,c)b, (a,b,c) 
Case 22: bRa, aTc, bTc  Solution:  b(a,c), (b,c)a, (a,b,c) 
Case 23: aTb, aRc, bTc  Solution:  a(b,c), (a,b)c, (a,b,c) 
Case 24: aTb, cRa, bTc  Solution:  c(a,b), (b,c)a, (a,b,c) 
Case 25: aTb, aTc, bRc  Solution:  b(a,c), (a,b)c, (a,b,c) 
Case 26: aTb, aTc, cRb  Solution:  c(a,b), (a,c)b, (a,b,c) 
Case 27: aTb, aTc, bTc  Solution:  (a,b,c) 
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Appendix 2 
 
Social Choice Solutions for m=4 (no ties considered) 
 
Case 1: aRb, aRc, aRd, bRc, bRd , cRd  Solution: abcd 
Case 2: aRb, aRc, aRd, bRc, bRd, dRc  Solution: abdc 
Case 3: aRb, aRc, aRd, bRc, dRb, cRd  Solution: abcd, acdb, adbc 
Case 4: aRb, aRc, aRd, bRc, dRb, dRc  Solution: adbc 
Case 5: aRb, aRc, aRd, cRb, bRd , cRd  Solution: acbd 
Case 6: aRb, aRc, aRd, cRb, bRd , cRd  Solution: abdc, acbd, adcb 
Case 7: aRb, aRc, aRd, cRb, dRb , cRd  Solution: acdb 
Case 8: aRb, aRc, aRd, cRb, dRb , dRc  Solution: adcb 
Case 9: aRb, aRc, dRa, bRc, bRd , cRd  Solution: abcd, bcda, dabc 
Case 10: aRb, aRc, dRa, bRc, bRd , dRc  Solution: abdc, bdac, dabc 
Case 11: aRb, aRc, dRa, bRc, dRb, cRd  Solution: abcd, dabc, cdab 
Case 12: aRb, aRc, dRa, bRc, dRb, dRc  Solution: dabc 
Case 13: aRb, aRc, dRa, cRb, bRd , cRd  Solution: acbd, cbda, dacb 
Case 14: aRb, aRc, dRa, cRb, bRd , dRc  Solution: acbd, bdac, dacb 
Case 15: aRb, aRc, dRa, cRb, dRb , cRd  Solution: acdb, cdab, dacb 
Case 16: aRb, aRc, dRa, cRb, dRb , dRc  Solution: dacb 
Case 17: aRb, cRa, aRd, bRc, bRd , cRd  Solution: abcd, bcad, cabd 
Case 18: aRb, cRa, aRd, bRc, bRd , dRc  Solution: abdc, bdca, cabd 
Case 19: aRb, cRa, aRd, bRc, dRb , cRd  Solution: adbc, bcad, cadb 
Case 20: aRb, cRa, aRd, bRc, dRb , dRc  Solution: adbc, dbca, cadb 
Case 21: aRb, cRa, aRd, cRb, bRd , cRd  Solution: cabd 
Case 22: aRb, cRa, aRd, cRb, bRd , dRc  Solution: cabd, abdc, dcab 
Case 23: aRb, cRa, aRd, cRb, dRb , cRd  Solution: cadb 
Case 24: aRb, cRa, aRd, cRb, dRb , dRc  Solution: cadb, dcab, adcb 
Case 25: aRb, cRa, dRa, bRc, bRd , cRd  Solution: abcd, bcda, cdab 
Case 26: aRb, cRa, dRa, bRc, bRd , dRc  Solution: abdc, bdca, dcab 
Case 27: aRb, cRa, dRa, bRc, dRb , cRd  Solution: cdab, bcda, dabc 
Case 28: aRb, cRa, dRa, bRc, dRb , dRc  Solution: dcab, dbca, dabc 
Case 29: aRb, cRa, dRa, cRb, bRd , cRd  Solution: cabd, cbda, cdab 
Case 30: aRb, cRa, dRa, cRb, bRd , dRc  Solution: cabd, bdca, dcab 
Case 31: aRb, cRa, dRa, cRb, dRb , cRd  Solution: cdab 
Case 32: aRb, cRa, dRa, cRb, dRb , dRc  Solution: dcab 



 28 

Case 33: bRa, aRc, aRd, bRc, bRd , cRd  Solution: bacd 
Case 34: bRa, aRc, aRd, bRc, bRd , dRc  Solution: badc 
Case 35: bRa, aRc, aRd, bRc, dRb , cRd  Solution: acdb, bacd, dbac 
Case 36: bRa, aRc, aRd, bRc, dRb , dRc  Solution: adbc, badc, dbac 
Case 37: bRa, aRc, aRd, cRb, bRd , cRd  Solution: acbd, bacd, cbad 
Case 38: bRa, aRc, aRd, cRb, bRd , dRc  Solution: adcb, badc, cbad 
Case 39: bRa, aRc, aRd, cRb, dRb , cRd  Solution: acdb, bacd, cdba 
Case 40: bRa, aRc, aRd, cRb, dRb , dRc  Solution: adcb, badc, dcba 
Case 41: bRa, aRc, dRa, bRc, bRd , cRd  Solution: bacd, bcda, bdac 
Case 42: bRa, aRc, dRa, bRc, bRd , dRc  Solution: bdac 
Case 43: bRa, aRc, dRa, bRc, dRb , cRd  Solution: bacd, cdba, dbac 
Case 44: bRa, aRc, dRa, bRc, dRb , dRc  Solution: dbac 
Case 45: bRa, aRc, dRa, cRb, bRd , cRd  Solution: acbd, bdac, cbda 
Case 46: bRa, aRc, dRa, cRb, bRd , dRc  Solution: dacb, bdac, cbda 
Case 47: bRa, aRc, dRa, cRb, dRb , cRd  Solution: acdb, dbac, cdba 
Case 48: bRa, aRc, dRa, cRb, dRb , dRc  Solution: dacb, dbac, dcba 
Case 49: bRa, cRa, aRd, bRc, bRd , cRd  Solution: bcad 
Case 50: bRa, cRa, aRd, bRc, bRd , dRc  Solution: badc, bcad, bdca 
Case 51: bRa, cRa, aRd, bRc, dRb , cRd  Solution: cadb, bcad, dbca 
Case 52: bRa, cRa, aRd, bRc, dRb , dRc  Solution: adbc, bcad, dbca 
Case 53: bRa, cRa, aRd, cRb, bRd , cRd  Solution: cbad 
Case 54: bRa, cRa, aRd, cRb, bRd , dRc  Solution: badc, cbad, dcba 
Case 55: bRa, cRa, aRd, cRb, dRb , cRd  Solution: cadb, cbad, cdba 
Case 56: bRa, cRa, aRd, cRb, dRb , dRc  Solution: adcb, cbad, dcba 
Case 57: bRa, cRa, dRa, bRc, bRd , cRd  Solution: bcda 
Case 58: bRa, cRa, dRa, bRc, bRd , dRc  Solution: bdca 
Case 59: bRa, cRa, dRa, bRc, dRb , cRd  Solution: bcda, cdba, dbca 
Case 60: bRa, cRa, dRa, bRc, dRb , dRc  Solution: dbca 
Case 61: bRa, cRa, dRa, cRb, bRd , cRd  Solution: cbda 
Case 62: bRa, cRa, dRa, cRb, bRd , dRc  Solution: bdca, dcba, cbda 
Case 63: bRa, cRa, dRa, cRb, dRb , cRd  Solution: cdba 
Case 64: bRa, cRa, dRa, cRb, dRb , dRc  Solution: dcba
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Appendix 3 
 
An Example of the Algorithm for m = 5 
 
As an example we consider the following case which represents the social choices at the 
binary level as determined by the aggregate of the individual decisions:  

 

aRb, aRc, aTd, aRe 
   bRc, bRd, bRe 
    cRd, cTe 
    dRe 

 
From the stage 2 solutions given above, we can generate the stage 3 and stage 4 

solutions. We present the stage 4 solutions below and demonstrate how to construct the 
stage 5 solution from them. In order to simplify the notation, we introduce a shorthand 
for the R and T operators as follows: aRbRc...yRz becomes abc...yz and aTb becomes 
(a,b) so that, for example, aRbTcRdRe becomes a(b,c)de. 

 
The stage 4 solutions form a matrix as follows: 

 
Stage 4 Letter   
Combinations Stage 4 Winning Matrix 

 
(1) a,b,c,d abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b 
(2) a,b,c,e ab(c,e) 
(3) a,b,d,e abde, b(a,d)e, (a,d)be 
(4) a,c,d,e acde, c(a,d)e, (a,d)(c,e), a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e) 
(5) b,c,d,e bcde, bd(c,e), b(c,e)d 

 
The SWF algorithm proceeds as follows. Consider each letter combination in the matrix, 
M(j,k), in lexicographical order that has not been covered at least oncei.e. M(1,1) through 
M(5,3). Find a stage 5 element which covers each such that no stage 4 element is covered 
more than twice and such that upon reduction from stage 5 to stage 4 there are no 
elements in the reduced set that are not part of the stage 4 solution that are covered 
more than once. When each element has been considered, go over the matrix again in 
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lexicographical order and cover again those elements that have only been covered once. 
A stage 5 element “covers” a stage 4 element if a letter can be blotted out of the stage 5 
element and the resultant element is identical to the stage 4 element. 
 
Step 1 
 
1) Consider M (1,1) = abcd. Insert an e in every possible position (starting to the right 
and working to the left) and compute the rating which is the number of stage 4 winners 
covered as follows: 
 
   Potential Element of   
Stage 4 Element  Stage 5 Winning Set Rating 

       
M(1,1) = abcd  abcde  4 

   abced  1 
   abecd  1 
   aebcd  1 
   eabcd  1 
   abc(d,e)  1 
   ab(c,e)d  2 
   a(b,e)cd  1 
   (a,e)bcd  1 
 

2) Pick highest rated one: abcde. Update list of covered elements. The number of times 
the element has been covered is indicated in parentheses. 
 
Covering Element  Covered Elements  
 
abcde  abcd (1), abde (1), acde (1), bcde (1)    
 
3) Check to see that no element is covered more than twice. If it is, don't add covering 
element to winning set and go back to (1). If it is not, go to (4). 
 
4) Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once. 
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(1) Blot out an e: We get abcd. abcd in winning set. 
(2) Blot out a d: We get abce. abce not in winning set, but covered only once. 
(3) Blot out a c: We get abde. abde in winning set. 
(4) Blot out a b: We get acde. acde in winning set. 
(5) Blot out an a: We get bcde. bcde in winning set. 

 
Winning set is now {abcde}. 
Element not in stage 4 winning matrix, but covered only once: abce 
 
5) Go back to (1) and proceed with next element. 
 
Step 2 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(1,2) = acbd   acbde    3 
     acbed   1 
     acebd   1 
     aecbd   1 
     eacbd   1 
     acb(d,e)    1 
     ac(b,e)d   1 
     a(c,e)bd   1 
     (a,e)cbd   1 
 
Pick highest rated one: acbde. Update list of covered elements. 
 
Covering Element  Covered Elements 
 
acbde   abcd (1), abde (2), acde (2), bcde (1) acbd (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
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{abcde, acbde} 
 

(1) Blot out an e: We get abcd, acbd. In winning set: abcd, abdc. 
(2) Blot out a d: We get abce, acbe. Not in winning set: abce, acbe. 
(3) Blot out a c: We get abde, abde. In winning set: abde, abde. 
(4) Blot out a b: We get acde, acde. In winning set: acde, acde. 
(5) Blot out an a: We get bcde, cbde. In winning set: bcde. Not in winning set: cbde 
 

Winning set is now: 
{abcde, acbde}  
 
Elements not in stage 4 winning matrix, but covered only once:  
abce, acbe, cbde 
Step 3 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(1,3) = bc(a,d)   bc(a,d)e    4 
     bc(a,d,e)   2 
     bce(a,d)   1 
     bec(a,d)   1 
     ebc(a,d)   1 
     b(c,e)(a,d)   3 
     (b,e)c(a,d)   1 
 
Pick highest rated one: bc(a,d)e. Update list of covered elements. 
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Covering Element  Covered Elements 
 
bc(a,d)e   abcd (1), abde (2), acde (2), bcde (2),  
    acbd (1), bc(a,d) (1), b(a,d)e (1), c(a,d)e (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set:  
{abcde, acbde, bc(a,d)e} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d). In winning set: abcd, abdc, bc(a,d). 
(2) Blot out a d: We get abce, acbe, bcae. Not in winning set: abce, acbe, bcae. 
(3) Blot out a c: We get abde, abde, b(a,d)e. In winning set: abde, abde, b(a,d)e. 
(4) Blot out a b: We get acde, acde, c(a,d)e. In winning set: acde, acde, c(a,d)e. 
(5) Blot out an a: We get bcde, cbde, bcde. In winning set: bcde, bcde. Not in 
winning set: cbde 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e}  
 
Elements not in stage 4 winning matrix, but covered only once:  
abce, acbe, bcae, cbde 
 
Step 4 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(1,5) = (a,d)bc   (a,d)bce    2 
     (a,d)bec   2 
     (a,d)ebc   1 
     (a,d,e)bc   2 
     e(a,d)bc   1 
     (a,d)b(c,e)   4 
     (a,d)(b,e)c   1 
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Pick highest rated one: (a,d)b(c,e). Update list of covered elements. 
 
Covering Element  Covered Elements 
 
(a,d)b(c,e)   abcd (1), abde (2), acde (2), bcde (2), acbd (1) 
    bc(a,d) (1), b(a,d)e (1), c(a,d)e (1), ab(c,e) (1), 
    (a,d)bc (1), (a,d)be (1), (a,d)(c,e) (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e)} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc. In winning set: abcd, abdc, 
bc(a,d), (a,d)bc. 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e). In winning set: ab(c,e). Not in 
winning set: abce, acbe, bcae. 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be. In winning set: abde, abde, 
b(a,d)e, (a,d)be. 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e). In winning set: acde, acde, 
c(a,d)e, (a,d)(c,e). 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e). In winning set: bcde, bcde. Not 
in winning set: cbde, db(c,e) 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e)}  
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Elements not in stage 4 winning matrix, but covered only once:  
abce, acbe, bcae, cbde, db(c,e) 
 
Step 5 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(1,5) = b(a,d)c   b(a,d)ce    2 
     b(a,d)ec   2 
     b(a,d,e)c   2 
     be(a,d)c   1 
     eb(a,d)c   1 
     b(a,d)(c,e)   4 
     (b,e)(a,d)c   1 
 
Pick highest rated one: b(a,d)(c,e). Update list of covered elements. 
 
Covering Element  Covered Elements 
 
b(a,d)(c,e)   abcd (1), abde (2), acde (2), bcde (2), acbd (1),   
    bc(a,d) (1), b(a,d)e (2), c(a,d)e (1), ab(c,e) (1),  
    (a,d)bc (1), (a,d)be (1) (a,d)(c,e) (2), b(a,d)c (1), 
    bd(c,e) (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e)} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c. In winning set: abcd, 
abdc, bc(a,d), (a,d)bc, b(a,d)c. 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e). In winning set: ab(c,e). 
Not in winning set: abce, acbe, bcae, ba(c,e). 
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(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e. In winning set: abde, 
abde, b(a,d)e, (a,d)be, b(a,d)e. 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e). In winning set: acde, 
acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e). 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e). In winning set: bcde, 
bcde, bd(c,e). Not in winning set: cbde, db(c,e) 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e)}  
 
Elements not in stage 4 winning matrix, but covered only once:  
abce, acbe, bcae, ba(c,e), cbde, db(c,e) 
 
Step 6 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(1,6) = c(a,d)b   c(a,d)be    3 
     c(a,d)eb   2 
     c(a,d,e)b   1 
     ce(a,d)b   1 
     ec(a,d)b   1 
     c(a,d)(b,e)   2 
     (c,e)(a,d)b   2 
 
Pick highest rated one: c(a,d)be. Update list of covered elements. 
 
Covering Element  Covered Elements 
 
c(a,d)be   abcd (1), abde (2), acde (2), bcde(2), acbd (1),   
    bc(a,d) (1), b(a,d)e (2), c(a,d)e  (2), ab(c,e) (1), 
    (a,d)bc (1), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1), 
    bd(c,e) (1), c(a,d)b (1) 
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Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b. In winning set: 
abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b. 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe. In winning set: 
ab(c,e). Not in winning set: abce, acbe, bcae, ba(c,e), cabe. 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. In winning set: 
abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e. In winning 
set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e. 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe. In winning set: 
bcde, bcde, bd(c,e). Not in winning set: cbde, db(c,e), cdbe. 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be}  
 
Elements not in stage 4 winning matrix, but covered only once:  
abce, acbe, bcae, ba(c,e), cabe, cbde, db(c,e), cdbe. 
 
Step 7 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(2,1) = ab(c,e)   ab(c,e)d    4 
     ab(c,d,e)   1 
     abd(c,e)   3 
     adb(c,e)   1 
     dab(c,e)   1 
     a(b,d)(c,e)   1 
     (a,d)b(c,e)   4 
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Pick highest rated one: ab(c,e)d. Update list of covered elements. 
 
Covering Element  Covered Elements 
 
ab(c,e)d   abcd (2), abde (2), acde (2), bcde (2), acbd (1), 
    bc(a,d) (1), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2), 
    (a,d)bc (1), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1), 
    bd(c,e) (1), c(a,d)b (1), a(c,e)d (1), b(c,e)d (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd. In 
winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd. 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e). In winning 
set: ab(c,e), ab(c,e). Not in winning set: abce, acbe, bcae, ba(c,e), cabe. 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed. In 
winning set: abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d. In 
winning set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d. 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d. In winning 
set: bcde, bcde, bd(c,e), b(c,e)d. Not in winning set: cbde, db(c,e), cdbe. 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d}  
 
Elements not in stage 4 winning matrix, but covered only once:  
abce, acbe, bcae, ba(c,e), cabe, abed, cbde, db(c,e), cdbe. 
 
The next stage 4 winner that has not already been covered twice is a(c,e)d. 
 
Step 8 
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   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(4,4) = a(c,e)d   a(c,e)db    1 
     a(c,e)bd   2 
     a(b,c,e)d   1 
     ab(c,e)d   4 
     ba(c,e)d   2 
     a(c,e)(b,d)   1 
     (a,b)(c,e)d   2 
 
ab(c,e)d doesn’t work since abcd has already been covered twice. Try a(c,e)bd. Update 
list of covered elements. 
 
Covering Element  Covered Elements         
a(c,e)bd   abcd (2), abde (2), acde (2), bcde (2), acbd (2), 
    bc(a,d) (1), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2), 
    (a,d)bc (1), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1), 
    bd(c,e) (1), c(a,d)b (1), a(c,e)d (2), b(c,e)d (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd. In 
winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd. 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b. In 
winning set: ab(c,e), ab(c,e). Not in winning set: abce, acbe, bcae, ba(c,e), cabe, 
a(c,e)b. 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd. In 
winning set: abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed, 
aebd. 
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(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, 
a(c,e)d. In winning set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, 
a(c,e)d. 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd. In 
winning set: bcde, bcde, bd(c,e), b(c,e)d. Not in winning set: cbde, db(c,e), cdbe, 
(c,e)bd. 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd}  
 
Elements not in stage 4 winning matrix, but covered only once:  
abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, abed, aebd, cbde, db(c,e), cdbe, (c,e)bd. 
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Step 9 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(4,5) = (c,e)(a,d)   (c,e)(a,d)b   2 
     (c,e)(a,b,d)   1 
     (c,e)b(a,d)   1 
     (b,c,e)(a,d)   1 
     b(c,e)(a,d)   3 
      
Pick highest rated one: b(c,e)(a,d) 
 
Covering Element  Covered Elements 
 
b(c,e)(a,d)   abcd (2), abde (2), acde (2), bcde (2), acbd (2), 
    bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2), 
    (a,d)bc (1), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1), 
    bd(c,e) (1), c(a,d)b (1), a(c,e)d (2), b(c,e)d (2), 
    (c,e)(a,d) (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d)} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, 
bc(a,d). In winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, 
bc(a,d). 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b, 
b(c,e)a. In winning set: ab(c,e), ab(c,e). Not in winning set: abce, acbe, bcae, 
ba(c,e), cabe, a(c,e)b, b(c,e)a. 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd, 
be(a,d). In winning set: abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning 
set: abed, aebd, be(a,d). 
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(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, 
a(c,e)d, (c,e)(a,d). In winning set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, 
a(c,e)d, a(c,e)d, (c,e)(a,d). 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd, 
b(c,e)d. In winning set: bcde, bcde, bd(c,e), b(c,e)d, b(c,e)d. Not in winning set: 
cbde, db(c,e), cdbe, (c,e)bd. 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d)}  
 
Elements not in stage 4 winning matrix, but covered only once:  
abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, abed, aebd, be(a,d), cbde, db(c,e), cdbe, 
(c,e)bd. 
 
Step 10 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(4,6) = (a,d,e)c   (a,d,e)cb   1 
     (a,d,e)bc   2 
     (a,b,d,e)c   1 
     b(a,d,e)c   2 
     (a,d,e)(b,c)   1 
      
Pick highest rated one: (a,d,e)bc 
 
Covering Element  Covered Elements 
 
(a,d,e)bc   abcd (2), abde (2), acde (2), bcde (2), acbd (2), 
    bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2), 
    (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1), 
    bd(c,e) (1), c(a,d)b (1), a(c,e)d (2), b(c,e)d (2), 
    (c,e)(a,d) (1), (a,d,e)c (1) 
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Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, 
bc(a,d), (a,d)bc. In winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, 
acbd, bc(a,d), (a,d)bc. 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b, 
b(c,e)a, (a,e)bc. In winning set: ab(c,e), ab(c,e). Not in winning set: abce, acbe, 
bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc. 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd, 
be(a,d), (a,d,e)b. In winning set: abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in 
winning set: abed, aebd, be(a,d), (a,d,e)b. 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, 
a(c,e)d, (c,e)(a,d), (a,d,e)c. In winning set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), 
c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c. 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd, 
b(c,e)d, (d,e)bc. In winning set: bcde, bcde, bd(c,e), b(c,e)d, b(c,e)d. Not in winning 
set: cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc. 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc}  
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Elements not in stage 4 winning matrix, but covered only once:  
abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, abed, aebd, be(a,d), (a,d,e)b, cbde, 
db(c,e), cdbe, (c,e)bd, (d,e)bc. 
 
Step 11 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(1,7) = d(a,c,e)   d(a,c,e)b   1 
     d(a,b,c,e)   1 
     db(a,c,e)   1 
     bd(a,c,e)   2 
     (b,d)(a,c,e)   1 
      
Pick highest rated one: bd(a,c,e) 
 
Covering Element  Covered Elements 
 
bd(a,c,e)   abcd (2), abde (2), acde (2), bcde (2), acbd (2), 
    bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2), 
    (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1), 
    bd(c,e) (2), c(a,d)b (1), a(c,e)d (2), b(c,e)d (2), 
    (c,e)(a,d) (1), (a,d,e)c (1), d(a,c,e) (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e)} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, 
bc(a,d), (a,d)bc, bd(a,c). In winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, 
abcd, acbd, bc(a,d), (a,d)bc. Not in winning set: bd(a,c). 
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(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b, 
b(c,e)a, (a,e)bc, b(a,c,e). In winning set: ab(c,e), ab(c,e). Not in winning set: abce, 
acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e). 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd, 
be(a,d), (a,d,e)b, bd(a,e). In winning set: abde, abde, b(a,d)e, (a,d)be, b(a,d)e, 
(a,d)be. Not in winning set: abed, aebd, be(a,d), (a,d,e)b, bd(a,e). 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, 
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e). In winning set: acde, acde, c(a,d)e, (a,d)(c,e), 
(a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e). 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd, 
b(c,e)d, (d,e)bc, bd(c,e). In winning set: bcde, bcde, bd(c,e), b(c,e)d, b(c,e)d, bd(c,e). 
Not in winning set: cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc. 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e)}  
 
Elements not in stage 4 winning matrix, but covered only once:  
bd(a,c), abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), abed, aebd, be(a,d), 
(a,d,e)b, bd(a,e), cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc. 
 
Now we go back and make a second pass over the stage 4 elements covering those that 
have only been covered once again. 
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Step 12 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(1,3) = b(a,d)c   b(a,d)ce    2 
     b(a,d)ec   2 
     b(a,d,e)c   2 
     be(a,d)c   1 
     eb(a,d)c   1 
     b(a,d)(c,e)   4 
     (b,e)(a,d)c   1 
 
Next 1-coverer in lex order: be(a,d)c. This does not work since be(a,d) has already been 
covered once. Try eb(a,d)c. 
 
Covering Element  Covered Elements 
 
eb(a,d)c   abcd (2), abde (2), acde (2), bcde (2), acbd (2), 
    bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2), 
    (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (2), 
    bd(c,e) (2), c(a,d)b (1), a(c,e)d (2), b(c,e)d (2), 
    (c,e)(a,d) (1), (a,d,e)c (1), d(a,c,e) (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e), eb(a,d)c} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, 
bc(a,d), (a,d)bc, bd(a,c), b(a,d)c. In winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, 
c(a,d)b, abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c. Not in winning set: bd(a,c). 
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(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b, 
b(c,e)a, (a,e)bc, b(a,c,e), ebac. In winning set: ab(c,e), ab(c,e). Not in winning set: 
abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac. 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd, 
be(a,d), (a,d,e)b, bd(a,e), eb(a,d). In winning set: abde, abde, b(a,d)e, (a,d)be, 
b(a,d)e, (a,d)be. Not in winning set: abed, aebd, be(a,d), (a,d,e)b, bd(a,e), eb(a,d). 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, 
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), e(a,d)c. In winning set: acde, acde, c(a,d)e, 
(a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e). Not in 
winning set: e(a,d)c 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd, 
b(c,e)d, (d,e)bc, bd(c,e), ebdc. In winning set: bcde, bcde, bd(c,e), b(c,e)d, b(c,e)d, 
bd(c,e). Not in winning set: cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc. 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e), eb(a,d)c}  
 
Elements not in stage 4 winning matrix, but covered only once:  
bd(a,c), abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac, abed, aebd, 
be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)c, cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc. 
 
Step 13 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(1,6) = c(a,d)b   c(a,d)be    3 
     c(a,d)eb   2 
     c(a,d,e)b   1 
     ce(a,d)b   1 
     ec(a,d)b   1 
     c(a,d)(b,e)   2 
     (c,e)(a,d)b   2 
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Next 1-coverer in lex order: c(a,d,e)b. This does not work since (a,d,e)b has already been 
covered once. Try ce(a,d)b. 
 
Covering Element  Covered Elements 
 
ce(a,d)b   abcd (2), abde (2), acde (2), bcde (2), acbd (2), 
    bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2), 
    (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (2), 
    bd(c,e) (2), c(a,d)b (2), a(c,e)d (2), b(c,e)d (2), 
    (c,e)(a,d) (1), (a,d,e)c (1), d(a,c,e) (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, 
bc(a,d), (a,d)bc, bd(a,c), b(a,d)c, c(a,d)b. In winning set: abcd, abdc, bc(a,d), (a,d)bc, 
b(a,d)c, c(a,d)b, abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b. Not in winning set: 
bd(a,c). 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b, 
b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab. In winning set: ab(c,e), ab(c,e). Not in winning 
set: abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd, 
be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b. In winning set: abde, abde, b(a,d)e, 
(a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed, aebd, be(a,d), (a,d,e)b, bd(a,e), 
eb(a,d), e(a,d)b. 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, 
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), e(a,d)c, ce(a,d). In winning set: acde, acde, 
c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e). Not in 
winning set: e(a,d)c, ce(a,d) 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd, 
b(c,e)d, (d,e)bc, bd(c,e), ebdc, cedb. In winning set: bcde, bcde, bd(c,e), b(c,e)d, 
b(c,e)d, bd(c,e). Not in winning set: cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc, cedb. 
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Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b}  
 
Elements not in stage 4 winning matrix, but covered only once:  
bd(a,c), abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab, abed, 
aebd, be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d)c, ce(a,d), cbde, db(c,e), cdbe, (c,e)bd, 
(d,e)bc, ebdc, cedb 
 
Step 14 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(4,5) = (c,e)(a,d)   (c,e)(a,d)b   2 
     (c,e)(a,b,d)   1 
     (c,e)b(a,d)   1 
     (b,c,e)(a,d)   1 
     b(c,e)(a,d)   3 
 
Next 1-coverer in lex order: (c,e)(a,b,d). 
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Covering Element  Covered Elements 
 
(c,e)(a,b,d)   abcd (2), abde (2), acde (2), bcde (2), acbd (2), 
    bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2), 
    (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (2), 
    bd(c,e) (2), c(a,d)b (2), a(c,e)d (2), b(c,e)d (2), 
    (c,e)(a,d) (2), (a,d,e)c (1), d(a,c,e) (1) 
 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,b,d)} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, 
bc(a,d), (a,d)bc, bd(a,c), b(a,d)c, c(a,d)b, c(a,d,b). In winning set: abcd, abdc, bc(a,d), 
(a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b. Not in winning 
set: bd(a,c), c(a,d,b). 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b, 
b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab, (c,e)(a,b). In winning set: ab(c,e), ab(c,e). Not in 
winning set: abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac, 
ceab, (c,e)(a,b). 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd, 
be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b). In winning set: abde, abde, 
b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed, aebd, be(a,d), (a,d,e)b, 
bd(a,e), eb(a,d), e(a,d)b, e(a,d,b). 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, 
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), e(a,d)c, ce(a,d), (c,e)(a,d). In winning set: acde, 
acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), 
(c,e)(a,d). Not in winning set: e(a,d)c, ce(a,d) 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd, 
b(c,e)d, (d,e)bc, bd(c,e), ebdc, cedb, (c,e)(d,b). In winning set: bcde, bcde, bd(c,e), 
b(c,e)d, b(c,e)d, bd(c,e). Not in winning set: cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, 
ebdc, cedb, (c,e)(d,b). 
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Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,d,b)}  
 
Elements not in stage 4 winning matrix, but covered only once:  
bd(a,c), c(a,d,b), abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab, 
(c,e)(a,b), abed, aebd, be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), e(a,d)c, ce(a,d), 
cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc, cedb, (c,e)(d,b) 
 
Step 15 
 
   Potential Element of   
Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(4,6) = (a,d,e)c   (a,d,e)cb   1 
     (a,d,e)bc   2 
     (a,b,d,e)c   1 
     b(a,d,e)c   2 
     (a,d,e)(b,c)   1 
 
Next 1-coverer in lex order: (a,d,e)cb. This doesn’t work since (a,d,e)b has already been 
covered once. Try: (a,b,d,e)c. 
 
Covering Element  Covered Elements 
 
(a,b,d,e)c   abcd (2), abde (2), acde (2), bcde (2), acbd (2), 
    bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2), 
    (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (2), 
    bd(c,e) (2), c(a,d)b (2), a(c,e)d (2), b(c,e)d (2), 
   (c,e)(a,d) (2), (a,d,e)c (2), d(a,c,e) (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set: 
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{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,b,d), (a,b,d,e)c} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, 
bc(a,d), (a,d)bc, bd(a,c), b(a,d)c, c(a,d)b, c(a,d,b), (a,b,d)c. In winning set: abcd, abdc, 
bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b. Not in 
winning set: bd(a,c), c(a,d,b), (a,b,d)c. 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b, 
b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab, (c,e)(a,b), (a,b,e)c. In winning set: ab(c,e), 
ab(c,e). Not in winning set: abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, 
b(a,c,e), ebac, ceab, (c,e)(a,b), (a,b,e)c. 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd, 
be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), (a,b,d,e). In winning set: abde, 
abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed, aebd, be(a,d), 
(a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), (a,b,d,e). 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, 
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), e(a,d)c, ce(a,d), (c,e)(a,d), (a,d,e)c. In winning set: 
acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c, 
d(a,c,e), (c,e)(a,d), (a,d,e)c. Not in winning set: e(a,d)c, ce(a,d) 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd, 
b(c,e)d, (d,e)bc, bd(c,e), ebdc, cedb, (c,e)(d,b), (b,d,e)c. In winning set: bcde, bcde, 
bd(c,e), b(c,e)d, b(c,e)d, bd(c,e). Not in winning set: cbde, db(c,e), cdbe, (c,e)bd, 
(d,e)bc, ebdc, cedb, (c,e)(d,b), (b,d,e)c. 
 

Winning set is now: 
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,d,b), (a,b,d,e)c}  
 
Elements not in stage 4 winning matrix, but covered only once:  
bd(a,c), c(a,d,b), (a,b,d)c, abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), 
ebac, ceab, (c,e)(a,b), (a,b,e)c, abed, aebd, be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), 
(a,b,d,e), e(a,d)c, ce(a,d), cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc, cedb, (c,e)(d,b), (b,d,e)c 
 
Step 16 
 
   Potential Element of   
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Next Stage 4 Winner Stage 5 Winning Set Rating 
 
M(4,7) = d(a,c,e)   d(a,c,e)b   1 
     d(a,b,c,e)   1 
     db(a,c,e)   1 
     bd(a,c,e)   2 
     (b,d)(a,c,e)   1 
 
Next 1-coverer in lex order: d(a,c,e)b. 
 
Covering Element  Covered Elements 
 
d(a,c,e)b   abcd (2), abde (2), acde (2), bcde (2), acbd (2), 
    bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2), 
    (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (2), 
    bd(c,e) (2), c(a,d)b (2), a(c,e)d (2), b(c,e)d (2), 
   (c,e)(a,d) (2), (a,d,e)c (2), d(a,c,e) (1) 
 
Check to see that, upon reducing winning set from stage 5 to stage 4, there are no 
elements that are not in the stage 4 winning matrix that are covered more than once.  
 
Potential winning set:  
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,b,d), (a,b,d,e)c, d(a,c,e)b} 
 

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, 
bc(a,d), (a,d)bc, bd(a,c), b(a,d)c, c(a,d)b, c(a,d,b), (a,b,d)c, d(a,c)b. In winning set: 
abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, 
c(a,d)b. Not in winning set: bd(a,c), c(a,d,b), (a,b,d)c, d(a,c)b. 
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b, 
b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab, (c,e)(a,b), (a,b,e)c, (a,c,e)b. In winning set: 
ab(c,e), ab(c,e). Not in winning set: abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, 
(a,e)bc, b(a,c,e), ebac, ceab, (c,e)(a,b), (a,b,e)c, (a,c,e)b. 
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd, 
be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), (a,b,d,e), d(a,e)b. In winning set: 
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abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed, aebd, be(a,d), 
(a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), (a,b,d,e), d(a,e)b. 
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, 
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), e(a,d)c, ce(a,d), (c,e)(a,d), (a,d,e)c, d(a,c,e). In 
winning set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, 
(c,e)(a,d), (a,d,e)c, d(a,c,e), (c,e)(a,d), (a,d,e)c, d(a,c,e). Not in winning set: e(a,d)c, 
ce(a,d) 
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd, 
b(c,e)d, (d,e)bc, bd(c,e), ebdc, cedb, (c,e)(d,b), (b,d,e)c, d(c,e)b. In winning set: bcde, 
bcde, bd(c,e), b(c,e)d, b(c,e)d, bd(c,e). Not in winning set: cbde, db(c,e), cdbe, 
(c,e)bd, (d,e)bc, ebdc, cedb, (c,e)(d,b), (b,d,e)c, d(c,e)b. 
 

Winning set is now:   
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d), 
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,d,b), (a,b,d,e)c, d(a,c,e)b}  
 
Elements not in stage 4 winning matrix, but covered only once:  
bd(a,c), c(a,d,b), (a,b,d)c, d(a,c)b, abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, 
b(a,c,e), ebac, ceab, (c,e)(a,b), (a,b,e)c, (a,c,e)b, abed, aebd, be(a,d), (a,d,e)b, bd(a,e), eb(a,d), 
e(a,d)b, e(a,d,b), (a,b,d,e), d(a,e)b, e(a,d)c, ce(a,d), cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc, 
cedb, (c,e)(d,b), (b,d,e)c, d(c,e)b 
 

This completes the solution for stage 5.
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Appendix 3 
 
Proof that Algorithm Works in Every Case 
 

We do a proof by induction. We assume that the algorithm provides solutions 
which are correct for stage m-1. Then we prove that the solutions are correct for stage 
m. We also know that the algorithm provides correct solutions for stage 3 as presented 
earlier. 

 
Step 1: 
 
Any two (m-1)ary solutions will reduce to the same (m-2)ary solution for the m-2 
letters they have in common. 
 
Proof 
 
 a) We have assumed that the solutions at stage m-1 are   
 correct. 
 b) There are m solutions at stage m-1, one for each of m   
 combinations of m letters taken m-1 at a time. 
 
  e.g. for m=5, the solutions are 
 
Letter Combination   Solution 
 a,b,c,d  Z11 (abcd), Z21 (abcd), Z31 (abcd) 
 a,b,c,e   Z12 (abce), Z22 (abce), Z32 (abce) 
 a,b,d,e  Z13 (abde), Z23 (abde), Z33 (abde) 

  a,c,d,e   Z14 (acde), Z24 (acde), Z34 (acde) 
  b,c,d,e  Z15 (bcde), Z25 (bcde), Z35 (bcde) 
 
  where Zi j (wxyz) is a permutation of wxyz. 
 
  c) We know that when a letter is “blotted out” of a  
  (m-1)ary solution, the solution reduces to the     
 correct (m-2)ary solution. 
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d) Any two (m-1)ary solutions have m-2 letters in common. 
e) Therefore, if the uncommon letter is removed from each of two (m-1)ary 
solutions, both will reduce to the same (m-2)ary solution. 
 

Step 2: 
 
For any two (m-1)ary solutions, there are elements in both solutions which have 
m-2 letters which are the same and in the same order. In fact and by construction, 
there are 2n elements in each solution which have elements with the same letters 
in the same order where n is the number of elements in the (m-2)ary solution. 
 
Proof 
 
By construction 
 

e.g. for m=6 and the following case 
 

 
 
 
 
 
 
 
we have fifth stage solutions as follows: 

 
a,b,c,d,e: abcde, bcdea, eabcd, abdce, cbdea, eacbd, bcead, deabc, acdeb 
a,b,c,d,f: abcdf, cdfab, fabcd, abdcf, bacdf, cdfba, dcfab, facbd, fadbc, fbcda 

 

The fourth stage solution for a,b,c,d is abcd. 
 
When we reduce the above solution for a,b,c,d,e we get abcde, eabcd, and 
when we reduce the above solution for a,b,c,d,f we get abcdf and fabcd. 
Both solutions reduce correctly to abcd. 
 

Step 3: 

aRb aRc aRd eRa fRa 

 bRc bRd bRe fRb 

  cRd cRe cRf 

   dRe dRf 

    eRf 
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Any two (m-1)ary elements with (m-2) letters in common and in the same order 
can be covered by one m-ary element. 
 
 e.g. the two elements abc(d,e) and abc(d,f) can be covered by abc(d,e,f). 
 
Without loss of generality, let a1a2⋅⋅⋅am-2 be the m-2 letters that each element has in 
common. Let’s say that the (m-1)th letter is X for the first element and Y for the 
second. 
 
Therefore, not considering ties at the binary level, we have 
 

a1a2⋅⋅⋅ai-1Xai⋅⋅⋅am-2  
 
where ai is a distinct member of the set, {a,b,c⋅⋅⋅}, for  
1 < i < m-1, and ai =1 for i=1 and i=m-1. 
 
and a1a2⋅⋅⋅aj-1Yaj⋅⋅⋅am-2 
 
where aj is a distinct member of the set, {a,b,c⋅⋅⋅}, for  
1< j < m-1, and aj =1 for j=1 and j=m-1. 
 

We construct the m-ary element by taking the element,  
a1a2⋅⋅⋅am-2 , and inserting X between ai-1 and ai and Y between aj-1 and aj as follows: 
 
   a1a2⋅⋅⋅ai-1Xai⋅⋅⋅ aj-1Yaj⋅⋅⋅am-2. 
 
Clearly, if i=j, we may have either 
 
   a1a2⋅⋅⋅ai-1XYai⋅⋅⋅am-2 
  or a1a2⋅⋅⋅ai-1YXai⋅⋅⋅am-2. 
 
When ties at the binary level are considered, we have 
 
a1a2⋅⋅⋅(ai-1,X)ai⋅⋅⋅am-2 or a1a2⋅⋅⋅(ai-1,X,ai)⋅⋅⋅am-2  or a1a2⋅⋅⋅ai-1(X,ai)⋅⋅⋅am-2 
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and 
a1a2⋅⋅⋅(aj-1,Y)aj⋅⋅⋅am-2  or a1a2⋅⋅⋅(aj-1,Y,aj )⋅⋅⋅am-2  or a1a2⋅⋅⋅aj-1(Y,aj )⋅⋅⋅am-2 

 
We construct the m-ary element in the same way using parentheses as appropriate. 
e.g. for 
  a1a2⋅⋅⋅(ai-1,X)ai⋅⋅⋅am-2 and a1a2⋅⋅⋅(aj-1,Y)aj⋅⋅⋅am-2  

 
and for i=j, we have 
   
  a1a2⋅⋅⋅(ai-1,X,Y)aj⋅⋅⋅am-2 

 
 
The proof is not substantially changed if some of the alternatives are tied: 
 e.g. the two elements a(b,c)de and a(b,c)df can be covered by a(b,c)def 
and a(b,d)e and a(c,d)e can be covered by a(b,c,d)e. 
 
Step 4: 
 
Each element of the (m-1)ary winning matrix can combine with at least one other 
element of the winning matrix in such a way as to form an m-ary element that 
covers those elements so combined. There are enough such elements to cover all 
elements in the (m-1)ary winning matrix at least once. We will call such m-ary 
elements primary elements. 
 
Proof 
 
a) Since any two (m-1)ary rows have to reduce to the same solution at stage m-2 
for the m-2 letters they have in common, they will have 2n elements in common 
where n is the number of elements in the particular row at stage m-2. 
 
e.g. 
 

 row p: X[b1p]1,X[b1p]2,X[b2p]1,X[b2p]2, ⋅⋅⋅,X[bnp]1,X[bnp]2,X[bn+1p], ⋅⋅⋅ ,X[btp] 
 

 row q: Y[b1q]1,Y[b1q]2,Y[b2q]1,Y[b2q]2, ⋅⋅⋅,Y[bnq]1,Y[bnq]2,Y[bn+1q], ⋅⋅⋅ ,Y[bsq] 
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 where  
 

row x is that row of the winning matrix whose letter combination does 
not include x. 
bzp and bzq are (m-1)ary elements such as badc...t. Each element 
contains m-1 letters. 
bzp= bzq for 1 ≤ z ≤ n. 
bzp≠ bzq for n+1 ≤ z ≤ min(t,s), where min(t,s) is the minimum of t and 
s. 
X and Y are letters and the brackets represent an operator such that 
X[AB...P] = XAB...P or AXB...P or ... or AB...XP or AB...PX. 
X[bzv ]1 represents a different permutation of X and bzv than does X[bzv 
]2 

 
b) X[bzp]j and Y[bzq]j can be covered at stage m by X[Y[bip]]  
for 1 ≤ z ≤ n. 
 
c) That leaves the elements X[bn+1p], ⋅⋅⋅ ,X[btp] and  
Y[bn+1q], ⋅⋅⋅ ,Y[bsq]. By construction these elements cover  
(m-2)ary elements in rows other than p and q. So for each of these elements there 
exists an element in another row of the (m-1)ary winning matrix such that they 
each have m-2 letters in common and in the same order. Therefore, by Step (3) 
there is an m-ary element that covers each of these elements and at least one 
other. 
 
Example 
 
Let the (m-1)ary winning matrix be 
 
     
 
 
 
 

acde cdea eacd 
acdf cdfa facd 
acef cefa efac 
adef defa efad 
cdef   



 60 

The 5-ary set {acdef, cdefa, efacd} consists of primary elements and covers the 
4-ary winning matrix exactly once. 

 
Definition: Interference—when there are any two elements in a potential m-ary 
winning set that, when reduced to the (m-1)ary level, generate the same element 
which is not in the (m-1)ary winning matrix. 
 
Step 5: 
 
Two primary elements cannot interfere with each other. 
 
Proof: 
 
The only way interference can occur is if there are at stage m two elements such 
that, when a letter is blotted out, both elements reduce to the same (m-1)ary 
element and this element is not in the (m-1)ary winning matrix. 
 
Without loss of generality, let the two m-ary primary elements be  
 
  a1a2⋅⋅⋅ai-1Xai⋅⋅⋅am-2 and a1a2⋅⋅⋅aj-1Xaj⋅⋅⋅am-2 
 
When X is blotted out these both reduce to 
 
   a1a2⋅⋅⋅ am-2 
 
so that there are two such elements at stage m-1. We assume that this element is 
not in the winning matrix and prove the assertion that two primary elements 
cannot interfere by contradiction. 
 
Because both m-ary elements under consideration are primaries, they were both 
formed by merging two elements from the (m-1)ary winning matrix. Let these 
elements be 
 
 a1a2⋅⋅⋅ ak-1 ak+1⋅⋅⋅ ai-1Xai⋅⋅⋅am-2, a1a2⋅⋅⋅ al-1 al+1⋅⋅⋅ ai-1Xai⋅⋅⋅am-2 
 
and 
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 a1a2⋅⋅⋅ ak-1 ak+1⋅⋅⋅ aj-1Xaj⋅⋅⋅am-2, a1a2⋅⋅⋅ al-1 al+1⋅⋅⋅ aj-1Xaj⋅⋅⋅am-2, 
 
respectively. 
 
This implies that at the (m-2) stage there is an element 
 
  a1a2⋅⋅⋅ ak-1 ak+1⋅⋅⋅ ai-1ai⋅⋅⋅am-2 
 
and an element 
 
  a1a2⋅⋅⋅ al-1 al+1⋅⋅⋅ ai-1ai⋅⋅⋅am-2  
 
since there are two of each of them at the (m-1)ary stage when an X is blotted out 
and we know, by assumption,  that the (m-1)ary solution is correct. Therefore, 
there must be an element on row X (where row X is the row in the (m-1)ary 
winning matrix which does not contain an X in its letter combination), stage 
(m-1) that reduces to   
 
  a1a2⋅⋅⋅ ak-1 ak+1⋅⋅⋅ ai-1ai⋅⋅⋅am-2 
 
when a K is blotted out and to 
 
  a1a2⋅⋅⋅ al-1 al+1⋅⋅⋅ ai-1ai⋅⋅⋅am-2 
 
when an L is blotted out since every row at stage (m-1) must reduce correctly. 
The only element for which this is possible is 
 
  a1a2⋅⋅⋅ am-2 
 
and, therefore, this element must be in the (m-1)ary winning matrix which 
contradicts the assumption and the assertion is proven. 
 
Example 
 
Consider the following stage 4 winning matrix: 
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We can form the stage 5 primary abcde from abce and abde and the stage 5 
primary bcdea from bcea and bdea, respectively. Then on blotting out an a at 
stage 5 we will have two bcdes. Therefore, bcde must be in the stage 4 winning 
matrix or else interference would occur. Since at stage 4 there are two bces if an a 
is blotted out of row d and two bdes if an a is blotted out of row c, this implies 
that there is a bcde on row a. 
 
Step 6: 
 
For each (m-1)ary element there are m permutations of that element and the last 
remaining letter. (There are m letters altogether.) One of them is the primary 
element. So there are m-1 other permutations. Some of these cover two (m-1)ary 
elements and some cover one. We call these other permutations secondaries and 
we say they are related to the primary element from which they are derived. 
 
e.g. 
 Let  
  a1a2⋅⋅⋅ am-1 
  
be the (m-1)ary element. Then we have the possible set of m-ary permutations as 
follows: 
 
  {X a1a2⋅⋅⋅ am-1, a1X a2⋅⋅⋅ am-1, ⋅⋅⋅, a1a2⋅⋅⋅ am-1X} 
 
Let  
 a1a2⋅⋅⋅ ai-1Xai⋅⋅⋅am-1 
 
 be the primary element which covers two or more  
 (m-1)ary elements. One of the covered elements is  
 a1a2⋅⋅⋅ am-1 by construction. 

 abcd   
abce bcea eabc 
abde bdea eabd 
acde cdea eacd 
bcde   
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Consider  
 
 a1a2⋅⋅⋅ ai-1Xai⋅⋅⋅am-1 

 

If ai or ai-1 is blotted out, the resultant (m-1)ary elements might be in the (m-1)ary 
winning matrix. If a1a2⋅⋅⋅ ai-1Xai+1⋅⋅⋅am-1 is in the winning matrix, for example, then the 
element a1a2⋅⋅⋅ ai-1aiX⋅⋅⋅am-1 covers two (m-1)ary elements. Every other permutation of X 
and a1a2⋅⋅⋅ am-1 results in an element in which the X is out of position from its place in 
the primary element and, hence, the resultant element can only be a 1-coverer and only 
when the X is blotted out. Therefore, a secondary can cover one or in two cases 
possibly two elements. 
 
Step 7: 
 
There are at least two secondaries derived from any given m-ary primary that 
will not interfere with any other m-ary primary or secondary. 
 
Proof 
 
Any primary differs from any other primary or secondary by having at least one 
letter in a different place. Let’s consider a given primary or secondary element 
 
  a1a2⋅⋅⋅ai-1Xai⋅⋅⋅ aj-1Yaj⋅⋅⋅am-2 
 
Then we consider a second primary element such as  
 
  a1a2⋅⋅⋅ak-1Xak⋅⋅⋅ al-1Yal⋅⋅⋅am-2 
 
in which the letter Y is the one letter definitely in a different position from the 
preceding element. This second primary is unrelated to the first element since it 
is not derived from it. The letter X “slides” along the second element forming 
different permutations at different positions, (0 < k < m, a0 = am-1 =1), and different 
related secondaries. In the first element, X is fixed. Now when k=i, there is possible 
interference when a Y is blotted out since both elements reduce down to 
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  a1a2⋅⋅⋅ai-1Xai⋅⋅⋅ aj-1aj⋅⋅⋅am-2. 
 
In all other positions of X (or values of k), there are two letters out of synch for the 
two elements so they will not reduce down to the same (m-1)ary element and 
hence there will be no interference. 
 
If X and Y are adjacent in the first element 
 
  a1a2⋅⋅⋅ aj-1XYaj⋅⋅⋅am-2 
 
then there are two positions of X which could cause interference as follows 
 
  a1a2⋅⋅⋅ al-1XYal⋅⋅⋅am-2, l=j 
and 
  a1a2⋅⋅⋅ al-1YXal⋅⋅⋅am-2, l=j 
 
Therefore, there are at most two positions that could cause interference between 
a secondary and an unrelated element (primary or secondary). 
 
If there are ties in the first element as follows, 
 
  a1a2⋅⋅⋅(ai-1,X,ai,⋅⋅⋅ aj-1,Y,aj)⋅⋅⋅am-2, 
 
then the second element will produce interference only for those positions inside the 
parentheses. All other kinds of ties (not involving X and Y tied together) do not alter the 
above analysis. 
 
A secondary cannot interfere with the primary it is derived from since for the 
two elements 
 
  a1a2⋅⋅⋅ai-1Xai⋅⋅⋅ am-1 

and 
  a1a2⋅⋅⋅ak-1Xak⋅⋅⋅ am-1 
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when aj is blotted out for any value of j except aj=X, the two reduced elements will 
not be identical since each X will be in a different position and when X is blotted 
out the reduced element 
 
  a1a2⋅⋅⋅ am-2 
 
is in the stage m-1 winning matrix by definition. 
 
Therefore, the assertion is proved true. 
 
Step 8: 
 
There are, therefore, m-2 other secondary elements which are non-interfering not 
considering ties for the moment. Choose one of these if necessary (derived from 
each primary) to be the second m-ary element to cover each (m-1)ary element. 
Each (m-1)ary element is then covered twice in such a way that, when the 
solution is reduced from m-ary to (m-1)ary, every other element in the reduced 
solution is covered at most once. Therefore, we have proven that, if there is a 
correct solution at stage m-1, it is possible to find a correct solution for stage m. 
We know all the solutions for m=3. Therefore, a solution exists for m= 4⋅⋅⋅∞. 

 
When ties are considered, the number of possible non-interfering elements 

is reduced when both X and Y are in the tie by the number of tied alternatives. At 
least, when every alternative is tied, there are still two non-interfering elements 
as shown by the following. Assume the first element is as follows: 

 
  (a1,a2,⋅⋅⋅ai-1,X,ai,⋅⋅⋅ aj-1,Y,aj,⋅⋅⋅,am-2) 
 

Then the second element would be non-interfering for the following positions of X: 
 
   X(a1,a2,⋅⋅⋅ai-1,ai,⋅⋅⋅ aj-1,Y,aj,⋅⋅⋅,am-2) 
and 
   (a1,a2,⋅⋅⋅ai-1,X,ai,⋅⋅⋅ aj-1,Y,aj,⋅⋅⋅,am-2)X 
 

Therefore, there are at least two non-interfering elements. Since we know all the solutions for 
m=3, solutions exist for m= 4⋅⋅⋅∞. 
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