
 1

Disproof of Arrow’s Impossibility Theorem

by

John Clifton Lawrence
General Algorithm

POB 230351
Encinitas, CA 92023

Phone/fax: 760-633-3778
Web site: http://www.genalg.com
E-mail: jlawrence@genalg.com

 1998 by John Clifton Lawrence

July 15, 1998

 2

Abstract

Arrow’s Social Choice Impossibility Theorem is disproved by demonstrating that

Arrow’s treatment of tie situations was incorrect. Invalidating Arrow’s proof in itself

does not prove that Social Choice is possible. The possibility of Social Choice is proven

by presenting an algorithm which represents a social welfare function that maps the

domain of all possible combinations of individual choices into corresponding social

choices. It is proven that the algorithm produces correct solutions for any number of

alternatives and any number of voters which meet Arrow’s criteria.

Key Words: social choice, Arrow, Condorcet, voting, paradox of voting, algorithm,

social welfare function, impossibility theorem

 3

List of Symbols
x1

Ri

aRib

xik

aPib

N(a,b)

aTb

aIb

ρ(A)

Z11 (abcd)

X[b1p]1

 4

Introduction

In 1785 The Marquis de Condorcet (Granger [1989], McLean and Hewitt [1994])

published his Essai (1785) in which he pointed out the problems associated with an

election in which there are three or more candidates. This has become known as the

paradox of voting. Condorcet and the American President, Thomas Jefferson, were

collaborators in the production of both the French and American Constitutions.

Condorcet lost his life in the French Revolution because he left his secure hiding place

when he learned that his host was subject to the death penalty for harboring him. He

was preceded in the theory of elections by a few years by his friend Jean-Charles de

Borda (1781) who proposed the rank-order count method of voting. The French

Enlightenment philosophers hoped to “carry the methods of rigorous and mathematical

thought beyond the physical and into the realms of the human sciences.” (Black[1958])

Over the years there have been various writers that have contributed to the

theory of elections including E. J. Nanson (1907) and the Reverend C. L. Dodgson

(Lewis Carroll) (1873, 1874, 1876). In 1951 Nobel Laureate Kenneth J. Arrow published

Social Choice and Individual Values in which he explored the question of whether or not

individual preferences could be aggregated in some rational way in order to form a

social choice. He postulated five rational and ethical criteria and two axioms that such a

social welfare function should meet, and then proceeded to prove that no such social

welfare function existed. This theorem is known as Arrow's Impossibility Theorem, and

an impressive literature concerning itself with what has come to be known as Social

Choice theory has developed in the last forty -six years. At least one author considers

 5

that Arrow's Theorem “has a good claim to be considered the outstanding problem in

the philosophy of economics” (MacKay [1980]).

Some of the literature has been concerned with finding a way around Arrow's

basic result that no rational social choice is possible by relaxing one or more of his

criteria (Sen [1970], Riley [1988], Murakami [1968]). Arrow's theorem has important

political, economic and social implications since, if indeed no rational way to aggregate

individual preferences is possible and Pareto optimality is the best that can be achieved,

then a populist democracy which closely reflects the will of the people becomes

impossible and free market capitalism acquires a theoretically endorsed superiority

over any kind of populist socialistic or democratic economic system. Liberal or

Madisonian democracy in which the purpose of voting is just to elect leaders and

lawmakers becomes all that is attainable while populist or direct democracy in which

social policies are decided upon directly by voting becomes theoretically unfeasible. The

notion of electronic democracy in which voters vote directly on issues from computer

terminals and then supercomputers tally the results [what might be called an

Information Age Utopia] is not theoretically acceptable. These realizations have

produced pessimism and even nihilism among proponents of welfare economics

(Bergson, 1966). However, advocates of democratic voting systems should be equally

concerned as Arrow's result tarnishes the validity of democratic elections as well (Riker

[1982], Schofield [1985]).

In this paper we will present an algorithm which provides a solution for the

social choice problem for any number of alternatives without diluting Arrow's five

criteria and two axioms for social choice. In fact we strengthen them considerably. We

also give a more rigorous statement of those criteria. We prove that the algorithm works

for all values of m, the number of alternatives and for any number of voters, n. Our

 6

method is ordinal (rather than cardinal), based on pair-wise comparisons and

independent of irrelevant alternatives. It is shown in this paper that the key to opening

the door of social choice is the proper consideration of tie solutions.

 7

Notation

We follow conventional notation. Let us assume that we have a society composed of n
voters. For identification purposes, we can number them from 1 to n, 1< i ≤ n. We will
refer to the ith individual. We assume an alternative set, S, consisting of m alternatives:
a, b, c... . Let the set {x1, x2...xm} consist of some permutation of the alternative set
{a,b,c...}. Arrow uses an R notation, which we will follow, which means “is preferred or
is indifferent to.” To indicate that voter i prefers a to b or is indifferent between a and b,
we would write aRib. We assume that each voter has a “preference or indifference”
relationship, Ri, over the alternative set as follows:

Ri = xi1Rixi2Ri...xim-1Ri xim

where
 xik represents the kth “preference or indifference” of the ith voter.

We will use a shorthand notation as follows: abcd for aRib Ric Rid.

The Social Welfare Function

A function is a mapping from a set of elements called the domain to a set of elements
called the range in such a way that each element of the domain is connected with not
more than one element of the range. Now the mapping from domain to range can be in
such a way that for every element of the range there is at most one corresponding
element of the domain (one-to-one or injective); for every element of the range there is
one or more corresponding elements of the domain (onto or surjective) or for every
element of the range there is one and only one corresponding element of the domain
(one-to-one correspondence or bijective).

The Social Welfare Function (SWF) maps the domain which consists of all

possible combinations of Ri, 1≤ i ≤ n, votes onto the range, each element of which is a
possible social “preference or indifference” relationship, R, which is one of the set of
relationships, Ri, available to the individual voter. The domain can be represented as
the set of all possible combinations
{ R1, R2,... Rn} where each Ri can take on one of m! values. (If there are m alternatives,

 8

there are m! permutations of those alternatives.) There are thus (m!)n elements in the
domain. The corresponding range would be the set of values

{R} = {x1Rx2R...xm-1R xm}

where the set {x1, x2...xm} can take on m! possible values. The set {R}, the possible social
choices, is identical to the set { Ri} available to any individual.

At this point we are in complete agreement with Arrow's definition of a SWF
which states:

“By a social welfare function will be meant a process or rule which, for each set

of individual orderings R1,...,Rn for alternative social states (one ordering for each
individual), states a corresponding social ordering of alternative social states, R.” (1951).

In addition, we consider the possibility of social choices which are tie sets. To

motivate our discussion of tie sets, we take as an example the binary case of two
alternatives, a and b, and n voters. This is the typical, traditional voting situation. The
individual voters vote either aPib or bPia where aPib means voter i prefers a to b. The
corresponding social choices are aPb and bPa. If n is an even number and n/2 voters
vote aPib while the other n/2 voters vote bPia, then we have a tie which we indicate
{aPb,bPa} or aTb. Note that aTb = bTa. Therefore, the set of range elements that can be
considered social choices are aPb, bPa and the tie set, {aPb,bPa}.

Let N(a,b) be the number of voters who vote aPib , and N(b,a) be the number

who vote bPia. The rule connecting domain and range elements is as follows: If N(a,b) >
N(b,a), the social choice is aPb. If N(b,a) > N(b,a), the social choice is bPa. If N(a,b) =
N(b,a) (which can only happen if n is even), the social choice is a tie {aPb,bPa}. Clearly,
this element needs to be considered in the range as a distinct possibility.

Now let us consider preferences and indifferences. The individual indifference

realationship is aIib which means the ith voter is indifferent between a and b while the
social indifference relationship is aIb. The individual now can vote in one of three ways:
aPib, bPia or aIib. The social choices are aPb, bPa, {aPb,bPa} ≡ aTb and aIb. Note that a
distinction needs to be made between a social indifference and a social tie which are
philosophically distinct. Now a particular SWF might map the case, N(a,b) = N(b,a),
refered to above, into the social choice aIb while another SWF might map the same case

 9

into aTb. It is important to preserve the distinction between these two cases so that the
same options are available in the world in which P and I are possible as are available in
the world in which just P is possible.

Arrow (1951) claims to treat ties. He asserts: “...Axioms I and II do not exclude

the possibility that for some distinct [alternatives] x and y, both xRy and yRx. A strong
ordering, on the other hand, is a ranking in which no ties are possible.” Arrow is
implying here that a social choice could consist of the tie set {xRy, yRx}. Clearly, this
would not apply to individual choice since each individual would submit his vote in the
form xRiy or yRix but not both. It should be pointed out that the tie set {xRy, yRx} ≡
xTy is not the same as indifference and does not imply the social choice xIy. Analagous
to the case considered previously in which half the voters prefered a to b, half b to a and
the social choice was {aPb,bPa}, the situation here might be that half the voters vote xRiy
and half vote xRiy. The social choice {xRy, yRx} needs to be available as a distinct and
logically separate possibility from the social choice xIy. In fact, xIy might only be
appropriate if all the voters were indifferent between a and b but not appropriate if half
the voters prefered a to b and half, b to a.

Arrow’s (1951) proof that social choice is possible for two alternatives is

questionable because he doesn’t deal with the tie case, N(x,y) = N(y,x), properly. Arrow

states: “DEFINITION 9: By the method of majority decision is meant the social welfare

function in which xRy holds if and only if the number of individuals such that xRi y is at least as

great as the number of individuals such that yRi x.”

Therefore, the case in which N(x,y) = N(y,x) would be decided xRy. But this

violates the principal of neutrality or self-duality that requires every alternative to be
treated in exactly the same way. Murakami (1968) states: “As long as we are considering
the world of two alternatives, self-duality can be regarded as impartiality or neutrality
with respect to alternatives. A self-dual social decision function has exactly the same
structure regarding issue x against y as it does regarding issue y against x.” Self-duality
is a stronger version of Arrow’s Condition 3 — Citizen’s Sovereignty, but one would
think that, since Arrow provided for the possibility of the tie set, {xRy, yRx}, in Axiom I,
it should be called for in this case. There is no reason to prefer x over y in this situation
by calling for xRy as the solution in the tie case as opposed to yRx. You can’t have it

 10

both ways. If you aren’t going to allow the existence of tie sets as legitimate social
choices, then there is no legitimate social choice in the binary case either. On the other
hand, if tie sets are acceptable, then they must be admitted as potential social choice
solutions for cases such that n > 2, and this will lead, as we shall show, to a disproof of
Arrow’s Impossibility Theorem.

In showing connectivity Arrow states: “Clearly, always either N(x,y) ≥ N(y,x) or

N(y,x) ≥ N(x,y), so that, for all x and y, xRy or yRx.” This is an incorrect statement. One
could say correctly that ‘either N(x,y) ≥ N(y,x) or N(y,x) > N(x,y)’ or ‘either N(x,y) >
N(y,x) or N(y,x) ≥ N(x,y)’ or ‘either N(x,y) > N(y,x) or N(y,x) > N(x,y) or N(y,x) =
N(x,y).’ The latter restatement then would suggest the conclusion that either xRy or yRx
or {xRy, yRx}. However, Arrow’s definition of majority rule would have to be changed
to allow for the tie case. With these changes one could then go on to prove that social
choice is indeed possible for the case of two alternatives, but not allowing the
acceptance of the tie case leads to the conclusion that social choice is impossible for the
tie case as well.

Arrow’s statement that in a “strong ordering ... no ties are possible” violates the

common sense notion considered above in which (when only preferences are
considered) n/2 voters prefer a to b and n/2 voters prefer b to a. Clearly, this is a tie, and
clearly we cannot have the social choice aIb since the indifference operator is not a part
of the domain or the range. The social choice must be {aPb, bPa}.

In accordance with Arrow’s Axiom I which states: “For all x and y, either xRy or

yRx” and about which he states: “Note also that the word ‘or’ in the statement of Axiom
I does not exclude the possibility of both xRy and yRx.”, the social choice tie set, {xRy,
yRx}, is made possible because of the assumption by Arrow of the inclusive or in Axiom
I. If we would have had xRy AND yRx as a possibility in Axiom I, then indeed this
would imply xIy. When the “inclusive or” interpretation of Axiom I is extended to three
alternatives, we would have social choice solutions, for instance, of the form
{aRbRc,bRaRc,cRbRa}. For example, let us imagine a situation in which there are 3
alternatives and 6 voters. There are 6 possible choices in the choice set:
{aRbRc,aRcRb,bRaRc,bRcRa,cRaRb,cRbRa}. Let us assume that each voter votes for a
different element of this set. There is then one vote for each possible social choice. The
common sense solution is a tie among all the possible choices. Similarly, there are 24
possible choices for 4 alternatives, and, for the case of 24 voters each voting for a

 11

different choice, common sense would dictate a tie among all the possible social choices.
A similar case can be made for m=5, 6, These are the broadest conceivable tie sets,
and will be called maximal tie sets. Tie sets involving less than the total number of
choices are also conceivable.

An important thing to keep in mind here is that a tie refers to elements of the

range and not to alternatives. If there are just two alternatives in an election, we say,
sloppily, that it's possible for there to be a tie between x and y when what we mean
(considering just preference relationships) is that there is a possibility of a tie between
xPy and yPx which are the social choices. In other words, xPy and yPx are the social
choices for which a tie may exist not x and y which are the alternatives. Similarly, for
xRy and yRx, the tie is between xRy and yRx.

Therefore, in general, we consider that the range consists of all possible elements, {R} =

{x1Rx2R...xm-1R xm}, plus elements which represent all possible combinations of these
elements which are the tie solutions.

We take as the range of the SWF the power set (Stoll[1979]) of the set of all
possible rankings, ρ(A), where

 A = {R1,R2,...,Rq }

The set {R1,R2,...,Rq } represents every possible ranking of the alternatives a,b,c... . q =
m!. ρ(A) is the set of all possible subsets of A. If the vote is split precisely equally among
every possible ranking, then the social choice would be equal to the tie set A. If there is
a singular solution, then the social choice is equal to one of the elements of the set A.
Other subsets of A would represent tie solutions of varying degrees.

Paradox of Voting

According to the Condorcet method for determining the outcome of an election, we
consider each of the alternatives in pairs, determine the winner for each pair and then
determine the final social ordering by combining these results. For example, if there are
4 alternatives and 5 voters with votes abcd, abcd, adcb, cdab and acbd, clearly, aRb
(since there are 5 votes for ab and none for ba), aRc (since there are 4 votes for ac and 1

 12

vote for ca), aRd (4 votes for ad and 1 for da), cRb (3 votes for cb and 1 for bc), bRd (3
votes for bd and 1 for db) and cRd (4 votes for cd and 1 for dc). So the winner is acbd.
However, there are cases for which this method will not work.

Consider the following: 3 alternatives and 3 voters. Voter 1 votes abc; voter 2

votes bca; and voter 3 votes cab. If we consider the alternatives pairwise we have 2
votes for ab and 1 for ba; 2 votes for bc and 1 vote for cb; 2 votes for ca and 1 for ac.
Therefore, a is preferred to b is preferred to c is preferred to a, and we have the cycle
discovered by Condorcet. This is called the “paradox of voting.” Clearly, any of the
choices, abc, bca or cab would be incorrect.

The heart of Arrow's analysis is the criterion known as the Independence of

Irrelevant Alternatives. Arrow (1951) states that “...suppose that an election system has
been devised whereby each individual lists all the candidates in order of his preference
and then, by a preassigned procedure, the winning candidate is derived from these lists.
...Suppose an election is held, with a certain number of candidates in the field, each
individual filing his list of preferences , and then one of the candidates dies. Surely the
social choice should be made by taking each of the individual's preference lists, blotting
out completely the dead candidate's name, and considering only the orderings of the
remaining names in going through the procedure of determining a winner.”

Now let's reconsider the voting paradox considered above, assume that one

candidate dies and recompute from the individual lists. Clearly, if c dies, ab should be
the winner since there are 2 abs to 1 ba. Similarly, if b dies, ca should be the winner,
and, if a dies, bc should be the winner. Why shouldn't a similar demand be made of the
social choice i.e. if a candidate dies, the new social choice is determined by blotting out
the dead candidate's name from the social choice list? For example, if the social choice
were abcd and c died, why shouldn't the new social choice be abd? This is precisely the
case when the Condorcet criterion is used in a situation where it actually works. Let's
consider the example considered previously in which there were 4 alternatives and 5
voters with votes abcd, abcd, adcb, cdab and acbd. Clearly, aRb, aRc, aRd, cRb, bRd and
cRd. The winner is acbd. Let's say c dies. We have aRb, aRd and bRd from a
consideration of the individual lists which leads by combination to the social choice
abd, and we have the social choice abd by considering the social choice acbd and
blotting out c. So we get the same social choice by building the solution from individual

 13

lists (blotting out the dead candidate) as we do by considering the social choice and
blotting out the dead candidate.

Generalizing this notion, consider the tie solution {abc, bca, cab} for the voter's

paradox case considered above. If c dies, we have the solution {ab, ba, ab}. Now we
need some sort of rule for combining these elements in order to reduce this solution
down to either ab or ba. This is not necessary when the solution is not a tie, but is
necessary (although Arrow doesn’t consider it) when there is a tie and the solution at
the next lower stage contains fewer elements than the present stage solution. The rule
that would produce correct results in the example under consideration would be:
choose the element or elements whose number is greatest in the tie set after the
appropriate alternative has been blotted out. There are 2 abs and 1 ba in the solution so
we determine the reduced solution to be ab which matches with the solution which is
built up from the individual binary choices. Similarly, we get bc and ca, respectively if a
or b dies. So we can expand the 3 stage 2 solutions, ab, bc and ca to the stage 3 solution
{abc, bca, cab} and we can reduce the stage 3 solution {abc, bca, cab} to the 3 stage 2
solutions ab, bc and ca.

An Algorithm which Generates Social Choices

We now consider a general algorithm for generating solutions to the social choice
problem. In a real sense the algorithm is the SWF. We build the solution stage by stage
starting at the binary level. We first determine all the social choices by pairwise
comparisons of the m alternatives as determined by the individual voter lists. These are
the social choice solution sets for stage 2, one set for each possible pair of alternatives.
Then we build the stage 3 solution sets by taking a binary solution and expanding it by
combining it with another alternative such that the expanded stage 3 solution reduces
correctly to the stage 2 solution when each alternative is blotted out as in the above
example. We do this for each possible combination of 3 alternatives. We continue in
this way until, if there are m alternatives, we have generated the stage m solution.

Now for some more terminology. We call the members of a social choice tie set

“elements.” We say that a social choice i-ary element “covers” an (i-1)-ary element if a
letter can be blotted out of the i-ary element in such a way that the reduced i-ary

 14

element is identical with the (i-1)-ary element. For example, abcd covers abc since, if a d
is blotted out of abcd, we have abc.

A “combination rule” tells us how to combine terms when a letter is blotted out

in a tie solution set, and the solution set at the next lower level contains fewer elements.
We use the following combination rule when reducing an i-ary solution to an (i-1)-ary
solution: 1) blot out a particular letter in each element of the tie solution set; 2) out of
this set of elements, choose that set of elements as the reduced solution if, for each
element in the reduced solution, there are more of them than there are of any element
not in the reduced solution and there are the same number of them as there are for
every other element in the reduced solution. Let's call this the “majority” combination
rule.

For example, let us assume that the stage 3 and 4 solution sets are the following:

Letter Combination Stage 3 Solution Sets Stage 4 Solution Set

 a,b,c abc {abcd, acdb,adbc}
a,b,d adb
a,c,d acd
b,c,d {bcd, cdb, dbc}

In this example, if we blot out a d at stage 4, we have the modified set, {abc, acb,

abc}. There are 2 abcs and 1 acb. Therefore the reduced solution set at stage 3 is abc. If
we blot out a c, we have the modified set, {abd, adb, adb}. There are 2 adbs and 1 abd.
Therefore, the reduced solution set is adb. If we blot out a b, we have the modified set
{acd, acd, adc}. There are 2 acds and 1 adc. Therefore, the reduced solution set is acd.
Finally, if we blot out an a, we have the set {bcd, cdb, dbc} which is the solution set since
all three elements occur the same number of times.

We generalize these notions to the following definition:

Definition 1: The Lawrence SWF is an algorithm which, for m alternatives and n voters,
generates, for any stage i (2<i≤m), solution sets such that, when any letter is blotted out
and using the majority combination rule, the solution set reduces to a correct solution
for stage i-1.

 15

It should be pointed out that this is one very specific SWF which we will use to

prove that social choice is possible by proving that it always (for any m,n) produces
solutions which meet Arrow’s five criteria and two axioms. Other SWFs may exist as
well.

 16

Examples

If m=3, there are 27 possible combinations of pairwise comparisons since all domain
elements can be collapsed down to 27 different cases. At the binary level we have either
xRy or yRx or xTy. We work out the solutions as follows for each case. Each possible
solution is rated to see how well it covers the solution sets at stage 2 (1 point for each
stage 2 element covered). Since there are 3 stage 2 solution sets each consisting of one
element, a rating of 3 means that all stage 2 elements are covered by 1 stage 3 element
and that element is, hence, the stage 3 solution. If there are no stage 3 elements with a 3
rating, then there will be more than 1 stage 3 element in the solution set.

Case 1: aRb, aRc, bRc

 Stage 3 Choices Rating

 abc 3
 acb 2
 bac 2
 bca 1
 cab 1
 cba 0

Solution: aRbRc Check: Blot out a; Solution—bRc;
 Blot out b; Solution—aRc;
 Blot out c; Solution—aRb;

Case 2: aRb, aRc, cRb

 Stage 3 Choices Rating

 abc 2
 acb 3
 bac 1
 bca 0
 cab 2

 17

 cba 1

Solution: aRcRb Check: Blot out a; Solution—cRb;
 Blot out b; Solution—aRc;
 Blot out c; Solution—aRb;

Case 3: aRb, cRa, bRc

 Stage 3 Choices Rating

 abc 2
 acb 0
 bac 1
 bca 2
 cab 2
 cba 1

Solution: {aRbRc, bRcRa, cRaRb} Check: Blot out a; Solution—bRc;
 Blot out b; Solution—cRa;
 Blot out c; Solution—aRb;

Case 4: aRb, cRa, cRb

 Stage 3 Choices Rating

 abc 1
 acb 2
 bac 0
 bca 1
 cab 3
 cba 2

Solution: cRaRb Check: Blot out a; Solution—cRb;
 Blot out b; Solution—cRa;
 Blot out c; Solution—aRb;

 18

Case 5: bRa, aRc, bRc

 Stage 3 Choices Rating

 abc 2
 acb 1
 bac 3
 bca 2
 cab 0
 cba 1

Solution: bRaRc Check: Blot out a; Solution—bRc;
 Blot out b; Solution—aRc;
 Blot out c; Solution—bRa;

Case 6: bRa, aRc, cRb

 Stage 3 Choices Rating

 abc 1
 acb 2
 bac 2
 bca 1
 cab 1
 cba 2

Solution: {aRcRb, cRbRa, bRaRc} Check: Blot out a; Solution—cRb;
 Blot out b; Solution—aRc;
 Blot out c; Solution—bRa;

 19

Case 7: bRa, cRa, bRc

 Stage 3 Choices Rating

 abc 1
 acb 0
 bac 2
 bca 3
 cab 1
 cba 2

Solution: bRcRa Check: Blot out a; Solution—bRc;
 Blot out b; Solution—cRa;
 Blot out c; Solution—bRa;

Case 8: bRa, cRa, cRb

 Stage 3 Choices Rating

 abc 0
 acb 1
 bac 1
 bca 2
 cab 2
 cba 3

Solution: cRbRa Check: Blot out a; Solution—cRb;
 Blot out b; Solution—cRa;

 Blot out c; Solution—bRa;

Cases 9 through 27 are covered in Appendix 1.

For m=4, there are 64 cases not counting ties. These solutions are given in Appendix 2.

Proof that Algorithm Satisfies Arrow's Criteria

 20

 Axiom I: Connectivity

Either xRy or yRx or {xRy, yRx} by construction.

Axiom II: Transitivity

For all x, y and z, xRy and yRz imply xRz by construction; xRy and yTz imply
xRz; xTy and yRz imply xRz; and xTy and yTz imply xTz. As long as a solution can be
expressed in the form aQ1b Q2c...y Qm-1z where Qi can be either R or T, the solution is
transitive. Alternatively, any solution expressed in the form ab(c,d)e(f,g,h)ij where (c,d)
denotes cTd is transitive.

Condition 1: Existence of a free triple

Arrow only required that some set of three alternatives be available for any
logical ordering. Our algorithm assigns solutions for every logical ordering of every
individual voter.

 Condition 2: Positive Association of Individual and Social Values

This Condition requires that, if every individual voter raises some candidate in
his “preference or indifferenve” list, that candidate must not be lowered in the social
choice. The algorithm considered here satisfies an even stronger criterion which is, if
any individual voter raises a candidate in his “preference or indifference” list, that
candidate must not be lowered in the social choice.

Since the social choice is based on the choices made on binary pairs, let us

consider only one voter and only two candidates, a and b. Let us say this voter
originally preferred or was indifferent between a and b and then switched his vote to b
over a. As long as the majority of voters still prefer or are indifferent between a and b
after the switch, there will be no change in the social choice. However, there is the
possibility that the change of one vote will change the majority to b over a. Then, at
stage 2, bRa. At stage 3, if we originally had a unique solution, then it would have to be
either abc or acb. If we originally had a tie solution, then it would have to be {abc, bca,
cab} or {acb, cba, bac}. If we originally had a unique solution, then (after the change) we

 21

would either have a unique solution in which b is preferred to a or a tie solution in
which, in at least one element, b is ranked higher than a. If we originally had a tie
solution, then (after the change) we would have a unique solution in which b is ranked
higher than a. In any case, if a switch between two candidates by one individual voter
affects the social choice at the binary level, it will affect the social choice at any other
level since those social choices are built up from the binary level.

Condition 3: The Independence of Irrelevant Alternatives

Since the solution is computed stage by stage from binary pairs, it will always be
the same if one or more candidates dies or drops out. In fact the solution can be
recomputed starting at stage m and going down in stage number as well as starting at
stage 1 and going up.

Condition 4: Citizens' Sovereignty

The social choice is imposed if there is some pair of alternatives a and b such that
the Social Choice will always be bRa even if, for every individual voter aRib. In the
algorithm under consideration here, if the majority of voters prefers a to b, then aRb
and vice versa by construction.

Condition 5: The Condition of Nondictatorship

There is no dictator by construction, if the majority prefers or is indifferent to a
over b, then aRb and vice versa.

Formal Explication of the Algorithm

The following is a formal delineation of the steps involved in the algorithm. We

assume we have the correct solutions for the (m-1)th stage
(m > 2) and want to develop the solution for the mth stage.

1) Label all the alternatives alphanumerically such as a, b, c etc.
2) List all the (m-1)th stage letter combinations in lexicographical order.

 22

3) For each (m-1)th stage letter combination, list the (m-1)th stage solution next to
it forming the (m-1)th stage winning matrix. The elements of each solution are
written, for example, ab(c,d) etc.
4) Consider each element in the winning matrix in lexicographical order i.e. from
left to right columnwise and from top to bottom rowwise.
5) For each element in order list the possible mth stage elements by inserting the
remaining letter at the end of the element to form the first mth stage element and
then moving that letter one place to the left to form the next element etc. This
represents the lexicographical ordering of the mth stage elements. After this
process has been completed, the remaining letter is inserted in the same way
from right to left again forming elements with possible tie alternatives.
6) For each possible mth stage element assign a rating which is computed by
calculating the number of (m-1)th stage elements that are “covered” by this
element where “covered” has been defined previously.
7) Choose that mth stage element with the highest rating as a potential element
of the mth stage winning set. If there is a tie in the ratings consider the first
element of the tie in lexicographical order.
8) Keep a list of the (m-1)th stage elements that are covered as they occur as a
result of the inclusion of a potential mth stage element in the winning set. For
each “covered” element, keep a record as to how many times it has been covered.
8) Make sure that, when the potential element are considered to be part of the
winning solution, no (m-1)th stage element is covered more than twice.
9) If a potential stage m element results in a (m-1)th stage element being
covered more than twice, then consider the next element in lexicographical order
of the same rating or next lower rating. Go back to step 1.
10) Check to see that, upon reducing winning set from stage 5 to stage 4, there
are no elements that are not in the stage 4 winning matrix that are covered more
than once.
11) If there are elements not in the winning matrix that are covered more than
once, the potential element must be thrown out. Consider the next element in
lexicographical order of the same or next lower rating. Go back to step 1.
12) If all potential stage 5 elements have been considered and no suitable element
has been found, then go back to the last element included in the winning set that
could be changed in such a way as to result in the least number of changes to the

 23

winning set. Change that element to another one thus allowing one of the
presently considered elements to be used in the winning set.
13) Add the potential element to the winning set.
14) Go back to step 1 and continue until every (m-1)th stage element has been
considered.
15) If some (m-1)th stage elements have not been covered twice, start over
considering those particular elements in lexicographical order.
16) Continue until all (m-1)th stage elements have been covered exactly twice.

An example worked out for the case m=5 is given in Appendix 3.

The proof that the algorithm works in every case is given in Appendix 4.

New Directions

Since many of the solutions are ties, we may use an additional criterion to choose
among them. In fact we could introduce the concept of “digital utility” which would be
a measure of the “goodness of fit” of each of the elements of the tie set. We could
measure for each individual voter the goodness of fit of his preference list with the
social choice by measuring the “distance,” for each alternative, between the position of
that alternative in the voter’s preference list and the position of that alternative in the
social choice. For instance, if voter i places alternative a 2nd in his list and the social
choice places a 4th, there is a distance of 2 between the individual choice and the social
choice. Summing over all alternatives and all individuals, we could get a measure of the
digital utility for each element of the tie set. The element with the lowest summation
would be the one with the highest digital utility, and, therefore, could be chosen as the
social choice.

There is reason to believe that the social choices produced by the algorithm we
have presented are stable in that it doesn’t pay for any voter to vote insincerely. We
quote Murakami (1968): “Therefore, if a democracy is based on pairwise comparisons,
the outcome of sincere individual decisions is, if it exists at all, always stable. Any
insincere or strategic move cannot improve the situation for any individual. This is one
of the essential features of democracy based on pairwise comparison. Therefore, insofar

 24

as a democracy is based on pairwise comparisons, a distinction between individual
decisions and individual preferences may not be so important.”

The aspect of pairwise comparisons also opens another door: that of probabilistic

voting systems based upon limited information from each individual. Instead of
millions of voters exhaustively ranking hundreds of alternatives, we can envision a
voting system in which different voters are assigned different pairs of candidates to be
ranked on a pairwise or a partial list ranking basis. Then all this information can be
integrated to form the social choice with the probability of error made as low as desired
by increasing the number of pairwise or partially ordered lists considered. The results
could be compared with non-probabilistic voting systems for accuracy of results and
effort (on the voters’ parts) expended.

Conclusions

We have shown that Arrow’s Impossibility Theorem is flawed since it doesn’t handle tie
solutions correctly. We have demonstrated an algorithm which generates social choices
and, therefore, constitutes a SWF. We allow a social choice to consist of a set of tie
elements. The algorithm is based on binary, pairwise comparisons and satisfies a
strengthened version of Arrow’s conditions and axioms as originally expounded . The
social choices for all combinations of two alternatives are first determined. Then the
social choices for 3, 4, ... alternatives are built up stage by stage. We have proven that
the algorithm provides solutions for all values of m (number of alternatives) and n
(number of voters). Therefore, Condorcet’s “paradox of voting” has been resolved and
Social Choice is possible.

 25

Appendix 1

Social Choice Solutions for m=3

(Both “preferences or indifferences” and ties)

Case 9: aRb, aRc, bTc

 Stage 3 Alternatives Rating

 abc 2
 acb 2
 bac 1
 bca 0
 cab 1
 cba 0
 a(b,c) 3
 (b,c)a 1
 b(a,c) 0
 (a,c)b 1
 c(a,b) 0
 (a,b)c 1
 (a,b,c) 1

Solution: aRbIc [a(b,c)] Check: Blot out a; Solution—bIc;
 Blot out b; Solution—aRc;
 Blot out c; Solution—aRb;

 26

We will just present the rest of the solutions without giving the details.

Case 10: aRb, cRa, bTc Solution: cab, a(b,c), (b,c)a
Case 11: bRa, aRc, bTc Solution: bac, a(b,c), (b,c)a
Case 12: bRa, cRa, bTc Solution: (b,c)a
Case 13: aRb, aTc, bRc Solution: abc, b(a,c), (a,c)b
Case 14: aRb, aTc, cRb Solution: (a,c)b
Case 15: bRa, aTc, bRc Solution: b(a,c)
Case 16: bRa, aTc, cRb Solution: cba, b(a,c), (a,c)b
Case 17: aTb, aRc, bRc Solution: (a,b)c
Case 18: aTb, aRc, cRb Solution: acb, (a,b)c, c(a,b)
Case 19: aTb, cRa, bRc Solution: bca, (a,b)c, c(a,b)
Case 20: aTb, cRa, cRb Solution: c(a,b)
Case 21: aRb, aTc, bTc Solution: a(b,c), (a,c)b, (a,b,c)
Case 22: bRa, aTc, bTc Solution: b(a,c), (b,c)a, (a,b,c)
Case 23: aTb, aRc, bTc Solution: a(b,c), (a,b)c, (a,b,c)
Case 24: aTb, cRa, bTc Solution: c(a,b), (b,c)a, (a,b,c)
Case 25: aTb, aTc, bRc Solution: b(a,c), (a,b)c, (a,b,c)
Case 26: aTb, aTc, cRb Solution: c(a,b), (a,c)b, (a,b,c)
Case 27: aTb, aTc, bTc Solution: (a,b,c)

 27

Appendix 2

Social Choice Solutions for m=4 (no ties considered)

Case 1: aRb, aRc, aRd, bRc, bRd , cRd Solution: abcd
Case 2: aRb, aRc, aRd, bRc, bRd, dRc Solution: abdc
Case 3: aRb, aRc, aRd, bRc, dRb, cRd Solution: abcd, acdb, adbc
Case 4: aRb, aRc, aRd, bRc, dRb, dRc Solution: adbc
Case 5: aRb, aRc, aRd, cRb, bRd , cRd Solution: acbd
Case 6: aRb, aRc, aRd, cRb, bRd , cRd Solution: abdc, acbd, adcb
Case 7: aRb, aRc, aRd, cRb, dRb , cRd Solution: acdb
Case 8: aRb, aRc, aRd, cRb, dRb , dRc Solution: adcb
Case 9: aRb, aRc, dRa, bRc, bRd , cRd Solution: abcd, bcda, dabc
Case 10: aRb, aRc, dRa, bRc, bRd , dRc Solution: abdc, bdac, dabc
Case 11: aRb, aRc, dRa, bRc, dRb, cRd Solution: abcd, dabc, cdab
Case 12: aRb, aRc, dRa, bRc, dRb, dRc Solution: dabc
Case 13: aRb, aRc, dRa, cRb, bRd , cRd Solution: acbd, cbda, dacb
Case 14: aRb, aRc, dRa, cRb, bRd , dRc Solution: acbd, bdac, dacb
Case 15: aRb, aRc, dRa, cRb, dRb , cRd Solution: acdb, cdab, dacb
Case 16: aRb, aRc, dRa, cRb, dRb , dRc Solution: dacb
Case 17: aRb, cRa, aRd, bRc, bRd , cRd Solution: abcd, bcad, cabd
Case 18: aRb, cRa, aRd, bRc, bRd , dRc Solution: abdc, bdca, cabd
Case 19: aRb, cRa, aRd, bRc, dRb , cRd Solution: adbc, bcad, cadb
Case 20: aRb, cRa, aRd, bRc, dRb , dRc Solution: adbc, dbca, cadb
Case 21: aRb, cRa, aRd, cRb, bRd , cRd Solution: cabd
Case 22: aRb, cRa, aRd, cRb, bRd , dRc Solution: cabd, abdc, dcab
Case 23: aRb, cRa, aRd, cRb, dRb , cRd Solution: cadb
Case 24: aRb, cRa, aRd, cRb, dRb , dRc Solution: cadb, dcab, adcb
Case 25: aRb, cRa, dRa, bRc, bRd , cRd Solution: abcd, bcda, cdab
Case 26: aRb, cRa, dRa, bRc, bRd , dRc Solution: abdc, bdca, dcab
Case 27: aRb, cRa, dRa, bRc, dRb , cRd Solution: cdab, bcda, dabc
Case 28: aRb, cRa, dRa, bRc, dRb , dRc Solution: dcab, dbca, dabc
Case 29: aRb, cRa, dRa, cRb, bRd , cRd Solution: cabd, cbda, cdab
Case 30: aRb, cRa, dRa, cRb, bRd , dRc Solution: cabd, bdca, dcab
Case 31: aRb, cRa, dRa, cRb, dRb , cRd Solution: cdab
Case 32: aRb, cRa, dRa, cRb, dRb , dRc Solution: dcab

 28

Case 33: bRa, aRc, aRd, bRc, bRd , cRd Solution: bacd
Case 34: bRa, aRc, aRd, bRc, bRd , dRc Solution: badc
Case 35: bRa, aRc, aRd, bRc, dRb , cRd Solution: acdb, bacd, dbac
Case 36: bRa, aRc, aRd, bRc, dRb , dRc Solution: adbc, badc, dbac
Case 37: bRa, aRc, aRd, cRb, bRd , cRd Solution: acbd, bacd, cbad
Case 38: bRa, aRc, aRd, cRb, bRd , dRc Solution: adcb, badc, cbad
Case 39: bRa, aRc, aRd, cRb, dRb , cRd Solution: acdb, bacd, cdba
Case 40: bRa, aRc, aRd, cRb, dRb , dRc Solution: adcb, badc, dcba
Case 41: bRa, aRc, dRa, bRc, bRd , cRd Solution: bacd, bcda, bdac
Case 42: bRa, aRc, dRa, bRc, bRd , dRc Solution: bdac
Case 43: bRa, aRc, dRa, bRc, dRb , cRd Solution: bacd, cdba, dbac
Case 44: bRa, aRc, dRa, bRc, dRb , dRc Solution: dbac
Case 45: bRa, aRc, dRa, cRb, bRd , cRd Solution: acbd, bdac, cbda
Case 46: bRa, aRc, dRa, cRb, bRd , dRc Solution: dacb, bdac, cbda
Case 47: bRa, aRc, dRa, cRb, dRb , cRd Solution: acdb, dbac, cdba
Case 48: bRa, aRc, dRa, cRb, dRb , dRc Solution: dacb, dbac, dcba
Case 49: bRa, cRa, aRd, bRc, bRd , cRd Solution: bcad
Case 50: bRa, cRa, aRd, bRc, bRd , dRc Solution: badc, bcad, bdca
Case 51: bRa, cRa, aRd, bRc, dRb , cRd Solution: cadb, bcad, dbca
Case 52: bRa, cRa, aRd, bRc, dRb , dRc Solution: adbc, bcad, dbca
Case 53: bRa, cRa, aRd, cRb, bRd , cRd Solution: cbad
Case 54: bRa, cRa, aRd, cRb, bRd , dRc Solution: badc, cbad, dcba
Case 55: bRa, cRa, aRd, cRb, dRb , cRd Solution: cadb, cbad, cdba
Case 56: bRa, cRa, aRd, cRb, dRb , dRc Solution: adcb, cbad, dcba
Case 57: bRa, cRa, dRa, bRc, bRd , cRd Solution: bcda
Case 58: bRa, cRa, dRa, bRc, bRd , dRc Solution: bdca
Case 59: bRa, cRa, dRa, bRc, dRb , cRd Solution: bcda, cdba, dbca
Case 60: bRa, cRa, dRa, bRc, dRb , dRc Solution: dbca
Case 61: bRa, cRa, dRa, cRb, bRd , cRd Solution: cbda
Case 62: bRa, cRa, dRa, cRb, bRd , dRc Solution: bdca, dcba, cbda
Case 63: bRa, cRa, dRa, cRb, dRb , cRd Solution: cdba
Case 64: bRa, cRa, dRa, cRb, dRb , dRc Solution: dcba

 29

Appendix 3

An Example of the Algorithm for m = 5

As an example we consider the following case which represents the social choices at the
binary level as determined by the aggregate of the individual decisions:

aRb, aRc, aTd, aRe
 bRc, bRd, bRe
 cRd, cTe
 dRe

From the stage 2 solutions given above, we can generate the stage 3 and stage 4

solutions. We present the stage 4 solutions below and demonstrate how to construct the
stage 5 solution from them. In order to simplify the notation, we introduce a shorthand
for the R and T operators as follows: aRbRc...yRz becomes abc...yz and aTb becomes
(a,b) so that, for example, aRbTcRdRe becomes a(b,c)de.

The stage 4 solutions form a matrix as follows:

Stage 4 Letter
Combinations Stage 4 Winning Matrix

(1) a,b,c,d abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b
(2) a,b,c,e ab(c,e)
(3) a,b,d,e abde, b(a,d)e, (a,d)be
(4) a,c,d,e acde, c(a,d)e, (a,d)(c,e), a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e)
(5) b,c,d,e bcde, bd(c,e), b(c,e)d

The SWF algorithm proceeds as follows. Consider each letter combination in the matrix,
M(j,k), in lexicographical order that has not been covered at least oncei.e. M(1,1) through
M(5,3). Find a stage 5 element which covers each such that no stage 4 element is covered
more than twice and such that upon reduction from stage 5 to stage 4 there are no
elements in the reduced set that are not part of the stage 4 solution that are covered
more than once. When each element has been considered, go over the matrix again in

 30

lexicographical order and cover again those elements that have only been covered once.
A stage 5 element “covers” a stage 4 element if a letter can be blotted out of the stage 5
element and the resultant element is identical to the stage 4 element.

Step 1

1) Consider M (1,1) = abcd. Insert an e in every possible position (starting to the right
and working to the left) and compute the rating which is the number of stage 4 winners
covered as follows:

 Potential Element of
Stage 4 Element Stage 5 Winning Set Rating

M(1,1) = abcd abcde 4

 abced 1
 abecd 1
 aebcd 1
 eabcd 1
 abc(d,e) 1
 ab(c,e)d 2
 a(b,e)cd 1
 (a,e)bcd 1

2) Pick highest rated one: abcde. Update list of covered elements. The number of times
the element has been covered is indicated in parentheses.

Covering Element Covered Elements

abcde abcd (1), abde (1), acde (1), bcde (1)

3) Check to see that no element is covered more than twice. If it is, don't add covering
element to winning set and go back to (1). If it is not, go to (4).

4) Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

 31

(1) Blot out an e: We get abcd. abcd in winning set.
(2) Blot out a d: We get abce. abce not in winning set, but covered only once.
(3) Blot out a c: We get abde. abde in winning set.
(4) Blot out a b: We get acde. acde in winning set.
(5) Blot out an a: We get bcde. bcde in winning set.

Winning set is now {abcde}.
Element not in stage 4 winning matrix, but covered only once: abce

5) Go back to (1) and proceed with next element.

Step 2

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(1,2) = acbd acbde 3
 acbed 1
 acebd 1
 aecbd 1
 eacbd 1
 acb(d,e) 1
 ac(b,e)d 1
 a(c,e)bd 1
 (a,e)cbd 1

Pick highest rated one: acbde. Update list of covered elements.

Covering Element Covered Elements

acbde abcd (1), abde (2), acde (2), bcde (1) acbd (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:

 32

{abcde, acbde}

(1) Blot out an e: We get abcd, acbd. In winning set: abcd, abdc.
(2) Blot out a d: We get abce, acbe. Not in winning set: abce, acbe.
(3) Blot out a c: We get abde, abde. In winning set: abde, abde.
(4) Blot out a b: We get acde, acde. In winning set: acde, acde.
(5) Blot out an a: We get bcde, cbde. In winning set: bcde. Not in winning set: cbde

Winning set is now:
{abcde, acbde}

Elements not in stage 4 winning matrix, but covered only once:
abce, acbe, cbde
Step 3

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(1,3) = bc(a,d) bc(a,d)e 4
 bc(a,d,e) 2
 bce(a,d) 1
 bec(a,d) 1
 ebc(a,d) 1
 b(c,e)(a,d) 3
 (b,e)c(a,d) 1

Pick highest rated one: bc(a,d)e. Update list of covered elements.

 33

Covering Element Covered Elements

bc(a,d)e abcd (1), abde (2), acde (2), bcde (2),
 acbd (1), bc(a,d) (1), b(a,d)e (1), c(a,d)e (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e}

(1) Blot out an e: We get abcd, acbd, bc(a,d). In winning set: abcd, abdc, bc(a,d).
(2) Blot out a d: We get abce, acbe, bcae. Not in winning set: abce, acbe, bcae.
(3) Blot out a c: We get abde, abde, b(a,d)e. In winning set: abde, abde, b(a,d)e.
(4) Blot out a b: We get acde, acde, c(a,d)e. In winning set: acde, acde, c(a,d)e.
(5) Blot out an a: We get bcde, cbde, bcde. In winning set: bcde, bcde. Not in
winning set: cbde

Winning set is now:
{abcde, acbde, bc(a,d)e}

Elements not in stage 4 winning matrix, but covered only once:
abce, acbe, bcae, cbde

Step 4

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(1,5) = (a,d)bc (a,d)bce 2
 (a,d)bec 2
 (a,d)ebc 1
 (a,d,e)bc 2
 e(a,d)bc 1
 (a,d)b(c,e) 4
 (a,d)(b,e)c 1

 34

Pick highest rated one: (a,d)b(c,e). Update list of covered elements.

Covering Element Covered Elements

(a,d)b(c,e) abcd (1), abde (2), acde (2), bcde (2), acbd (1)
 bc(a,d) (1), b(a,d)e (1), c(a,d)e (1), ab(c,e) (1),
 (a,d)bc (1), (a,d)be (1), (a,d)(c,e) (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e)}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc. In winning set: abcd, abdc,
bc(a,d), (a,d)bc.
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e). In winning set: ab(c,e). Not in
winning set: abce, acbe, bcae.
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be. In winning set: abde, abde,
b(a,d)e, (a,d)be.
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e). In winning set: acde, acde,
c(a,d)e, (a,d)(c,e).
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e). In winning set: bcde, bcde. Not
in winning set: cbde, db(c,e)

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e)}

 35

Elements not in stage 4 winning matrix, but covered only once:
abce, acbe, bcae, cbde, db(c,e)

Step 5

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(1,5) = b(a,d)c b(a,d)ce 2
 b(a,d)ec 2
 b(a,d,e)c 2
 be(a,d)c 1
 eb(a,d)c 1
 b(a,d)(c,e) 4
 (b,e)(a,d)c 1

Pick highest rated one: b(a,d)(c,e). Update list of covered elements.

Covering Element Covered Elements

b(a,d)(c,e) abcd (1), abde (2), acde (2), bcde (2), acbd (1),
 bc(a,d) (1), b(a,d)e (2), c(a,d)e (1), ab(c,e) (1),
 (a,d)bc (1), (a,d)be (1) (a,d)(c,e) (2), b(a,d)c (1),
 bd(c,e) (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e)}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c. In winning set: abcd,
abdc, bc(a,d), (a,d)bc, b(a,d)c.
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e). In winning set: ab(c,e).
Not in winning set: abce, acbe, bcae, ba(c,e).

 36

(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e. In winning set: abde,
abde, b(a,d)e, (a,d)be, b(a,d)e.
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e). In winning set: acde,
acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e).
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e). In winning set: bcde,
bcde, bd(c,e). Not in winning set: cbde, db(c,e)

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e)}

Elements not in stage 4 winning matrix, but covered only once:
abce, acbe, bcae, ba(c,e), cbde, db(c,e)

Step 6

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(1,6) = c(a,d)b c(a,d)be 3
 c(a,d)eb 2
 c(a,d,e)b 1
 ce(a,d)b 1
 ec(a,d)b 1
 c(a,d)(b,e) 2
 (c,e)(a,d)b 2

Pick highest rated one: c(a,d)be. Update list of covered elements.

Covering Element Covered Elements

c(a,d)be abcd (1), abde (2), acde (2), bcde(2), acbd (1),
 bc(a,d) (1), b(a,d)e (2), c(a,d)e (2), ab(c,e) (1),
 (a,d)bc (1), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1),
 bd(c,e) (1), c(a,d)b (1)

 37

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b. In winning set:
abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b.
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe. In winning set:
ab(c,e). Not in winning set: abce, acbe, bcae, ba(c,e), cabe.
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. In winning set:
abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be.
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e. In winning
set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e.
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe. In winning set:
bcde, bcde, bd(c,e). Not in winning set: cbde, db(c,e), cdbe.

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be}

Elements not in stage 4 winning matrix, but covered only once:
abce, acbe, bcae, ba(c,e), cabe, cbde, db(c,e), cdbe.

Step 7

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(2,1) = ab(c,e) ab(c,e)d 4
 ab(c,d,e) 1
 abd(c,e) 3
 adb(c,e) 1
 dab(c,e) 1
 a(b,d)(c,e) 1
 (a,d)b(c,e) 4

 38

Pick highest rated one: ab(c,e)d. Update list of covered elements.

Covering Element Covered Elements

ab(c,e)d abcd (2), abde (2), acde (2), bcde (2), acbd (1),
 bc(a,d) (1), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2),
 (a,d)bc (1), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1),
 bd(c,e) (1), c(a,d)b (1), a(c,e)d (1), b(c,e)d (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd. In
winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd.
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e). In winning
set: ab(c,e), ab(c,e). Not in winning set: abce, acbe, bcae, ba(c,e), cabe.
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed. In
winning set: abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d. In
winning set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d.
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d. In winning
set: bcde, bcde, bd(c,e), b(c,e)d. Not in winning set: cbde, db(c,e), cdbe.

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d}

Elements not in stage 4 winning matrix, but covered only once:
abce, acbe, bcae, ba(c,e), cabe, abed, cbde, db(c,e), cdbe.

The next stage 4 winner that has not already been covered twice is a(c,e)d.

Step 8

 39

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(4,4) = a(c,e)d a(c,e)db 1
 a(c,e)bd 2
 a(b,c,e)d 1
 ab(c,e)d 4
 ba(c,e)d 2
 a(c,e)(b,d) 1
 (a,b)(c,e)d 2

ab(c,e)d doesn’t work since abcd has already been covered twice. Try a(c,e)bd. Update
list of covered elements.

Covering Element Covered Elements
a(c,e)bd abcd (2), abde (2), acde (2), bcde (2), acbd (2),
 bc(a,d) (1), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2),
 (a,d)bc (1), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1),
 bd(c,e) (1), c(a,d)b (1), a(c,e)d (2), b(c,e)d (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd. In
winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd.
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b. In
winning set: ab(c,e), ab(c,e). Not in winning set: abce, acbe, bcae, ba(c,e), cabe,
a(c,e)b.
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd. In
winning set: abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed,
aebd.

 40

(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d,
a(c,e)d. In winning set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d,
a(c,e)d.
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd. In
winning set: bcde, bcde, bd(c,e), b(c,e)d. Not in winning set: cbde, db(c,e), cdbe,
(c,e)bd.

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd}

Elements not in stage 4 winning matrix, but covered only once:
abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, abed, aebd, cbde, db(c,e), cdbe, (c,e)bd.

 41

Step 9

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(4,5) = (c,e)(a,d) (c,e)(a,d)b 2
 (c,e)(a,b,d) 1
 (c,e)b(a,d) 1
 (b,c,e)(a,d) 1
 b(c,e)(a,d) 3

Pick highest rated one: b(c,e)(a,d)

Covering Element Covered Elements

b(c,e)(a,d) abcd (2), abde (2), acde (2), bcde (2), acbd (2),
 bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2),
 (a,d)bc (1), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1),
 bd(c,e) (1), c(a,d)b (1), a(c,e)d (2), b(c,e)d (2),
 (c,e)(a,d) (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d)}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd,
bc(a,d). In winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd,
bc(a,d).
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b,
b(c,e)a. In winning set: ab(c,e), ab(c,e). Not in winning set: abce, acbe, bcae,
ba(c,e), cabe, a(c,e)b, b(c,e)a.
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd,
be(a,d). In winning set: abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning
set: abed, aebd, be(a,d).

 42

(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d,
a(c,e)d, (c,e)(a,d). In winning set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e,
a(c,e)d, a(c,e)d, (c,e)(a,d).
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd,
b(c,e)d. In winning set: bcde, bcde, bd(c,e), b(c,e)d, b(c,e)d. Not in winning set:
cbde, db(c,e), cdbe, (c,e)bd.

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d)}

Elements not in stage 4 winning matrix, but covered only once:
abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, abed, aebd, be(a,d), cbde, db(c,e), cdbe,
(c,e)bd.

Step 10

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(4,6) = (a,d,e)c (a,d,e)cb 1
 (a,d,e)bc 2
 (a,b,d,e)c 1
 b(a,d,e)c 2
 (a,d,e)(b,c) 1

Pick highest rated one: (a,d,e)bc

Covering Element Covered Elements

(a,d,e)bc abcd (2), abde (2), acde (2), bcde (2), acbd (2),
 bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2),
 (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1),
 bd(c,e) (1), c(a,d)b (1), a(c,e)d (2), b(c,e)d (2),
 (c,e)(a,d) (1), (a,d,e)c (1)

 43

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd,
bc(a,d), (a,d)bc. In winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd,
acbd, bc(a,d), (a,d)bc.
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b,
b(c,e)a, (a,e)bc. In winning set: ab(c,e), ab(c,e). Not in winning set: abce, acbe,
bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc.
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd,
be(a,d), (a,d,e)b. In winning set: abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in
winning set: abed, aebd, be(a,d), (a,d,e)b.
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d,
a(c,e)d, (c,e)(a,d), (a,d,e)c. In winning set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e),
c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c.
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd,
b(c,e)d, (d,e)bc. In winning set: bcde, bcde, bd(c,e), b(c,e)d, b(c,e)d. Not in winning
set: cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc.

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc}

 44

Elements not in stage 4 winning matrix, but covered only once:
abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, abed, aebd, be(a,d), (a,d,e)b, cbde,
db(c,e), cdbe, (c,e)bd, (d,e)bc.

Step 11

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(1,7) = d(a,c,e) d(a,c,e)b 1
 d(a,b,c,e) 1
 db(a,c,e) 1
 bd(a,c,e) 2
 (b,d)(a,c,e) 1

Pick highest rated one: bd(a,c,e)

Covering Element Covered Elements

bd(a,c,e) abcd (2), abde (2), acde (2), bcde (2), acbd (2),
 bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2),
 (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (1),
 bd(c,e) (2), c(a,d)b (1), a(c,e)d (2), b(c,e)d (2),
 (c,e)(a,d) (1), (a,d,e)c (1), d(a,c,e) (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e)}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd,
bc(a,d), (a,d)bc, bd(a,c). In winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b,
abcd, acbd, bc(a,d), (a,d)bc. Not in winning set: bd(a,c).

 45

(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b,
b(c,e)a, (a,e)bc, b(a,c,e). In winning set: ab(c,e), ab(c,e). Not in winning set: abce,
acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e).
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd,
be(a,d), (a,d,e)b, bd(a,e). In winning set: abde, abde, b(a,d)e, (a,d)be, b(a,d)e,
(a,d)be. Not in winning set: abed, aebd, be(a,d), (a,d,e)b, bd(a,e).
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d,
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e). In winning set: acde, acde, c(a,d)e, (a,d)(c,e),
(a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e).
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd,
b(c,e)d, (d,e)bc, bd(c,e). In winning set: bcde, bcde, bd(c,e), b(c,e)d, b(c,e)d, bd(c,e).
Not in winning set: cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc.

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e)}

Elements not in stage 4 winning matrix, but covered only once:
bd(a,c), abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), abed, aebd, be(a,d),
(a,d,e)b, bd(a,e), cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc.

Now we go back and make a second pass over the stage 4 elements covering those that
have only been covered once again.

 46

Step 12

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(1,3) = b(a,d)c b(a,d)ce 2
 b(a,d)ec 2
 b(a,d,e)c 2
 be(a,d)c 1
 eb(a,d)c 1
 b(a,d)(c,e) 4
 (b,e)(a,d)c 1

Next 1-coverer in lex order: be(a,d)c. This does not work since be(a,d) has already been
covered once. Try eb(a,d)c.

Covering Element Covered Elements

eb(a,d)c abcd (2), abde (2), acde (2), bcde (2), acbd (2),
 bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2),
 (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (2),
 bd(c,e) (2), c(a,d)b (1), a(c,e)d (2), b(c,e)d (2),
 (c,e)(a,d) (1), (a,d,e)c (1), d(a,c,e) (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e), eb(a,d)c}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd,
bc(a,d), (a,d)bc, bd(a,c), b(a,d)c. In winning set: abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c,
c(a,d)b, abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c. Not in winning set: bd(a,c).

 47

(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b,
b(c,e)a, (a,e)bc, b(a,c,e), ebac. In winning set: ab(c,e), ab(c,e). Not in winning set:
abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac.
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd,
be(a,d), (a,d,e)b, bd(a,e), eb(a,d). In winning set: abde, abde, b(a,d)e, (a,d)be,
b(a,d)e, (a,d)be. Not in winning set: abed, aebd, be(a,d), (a,d,e)b, bd(a,e), eb(a,d).
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d,
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), e(a,d)c. In winning set: acde, acde, c(a,d)e,
(a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e). Not in
winning set: e(a,d)c
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd,
b(c,e)d, (d,e)bc, bd(c,e), ebdc. In winning set: bcde, bcde, bd(c,e), b(c,e)d, b(c,e)d,
bd(c,e). Not in winning set: cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc.

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e), eb(a,d)c}

Elements not in stage 4 winning matrix, but covered only once:
bd(a,c), abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac, abed, aebd,
be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)c, cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc.

Step 13

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(1,6) = c(a,d)b c(a,d)be 3
 c(a,d)eb 2
 c(a,d,e)b 1
 ce(a,d)b 1
 ec(a,d)b 1
 c(a,d)(b,e) 2
 (c,e)(a,d)b 2

 48

Next 1-coverer in lex order: c(a,d,e)b. This does not work since (a,d,e)b has already been
covered once. Try ce(a,d)b.

Covering Element Covered Elements

ce(a,d)b abcd (2), abde (2), acde (2), bcde (2), acbd (2),
 bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2),
 (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (2),
 bd(c,e) (2), c(a,d)b (2), a(c,e)d (2), b(c,e)d (2),
 (c,e)(a,d) (1), (a,d,e)c (1), d(a,c,e) (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd,
bc(a,d), (a,d)bc, bd(a,c), b(a,d)c, c(a,d)b. In winning set: abcd, abdc, bc(a,d), (a,d)bc,
b(a,d)c, c(a,d)b, abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b. Not in winning set:
bd(a,c).
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b,
b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab. In winning set: ab(c,e), ab(c,e). Not in winning
set: abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd,
be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b. In winning set: abde, abde, b(a,d)e,
(a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed, aebd, be(a,d), (a,d,e)b, bd(a,e),
eb(a,d), e(a,d)b.
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d,
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), e(a,d)c, ce(a,d). In winning set: acde, acde,
c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e). Not in
winning set: e(a,d)c, ce(a,d)
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd,
b(c,e)d, (d,e)bc, bd(c,e), ebdc, cedb. In winning set: bcde, bcde, bd(c,e), b(c,e)d,
b(c,e)d, bd(c,e). Not in winning set: cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc, cedb.

 49

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b}

Elements not in stage 4 winning matrix, but covered only once:
bd(a,c), abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab, abed,
aebd, be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d)c, ce(a,d), cbde, db(c,e), cdbe, (c,e)bd,
(d,e)bc, ebdc, cedb

Step 14

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(4,5) = (c,e)(a,d) (c,e)(a,d)b 2
 (c,e)(a,b,d) 1
 (c,e)b(a,d) 1
 (b,c,e)(a,d) 1
 b(c,e)(a,d) 3

Next 1-coverer in lex order: (c,e)(a,b,d).

 50

Covering Element Covered Elements

(c,e)(a,b,d) abcd (2), abde (2), acde (2), bcde (2), acbd (2),
 bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2),
 (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (2),
 bd(c,e) (2), c(a,d)b (2), a(c,e)d (2), b(c,e)d (2),
 (c,e)(a,d) (2), (a,d,e)c (1), d(a,c,e) (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,b,d)}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd,
bc(a,d), (a,d)bc, bd(a,c), b(a,d)c, c(a,d)b, c(a,d,b). In winning set: abcd, abdc, bc(a,d),
(a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b. Not in winning
set: bd(a,c), c(a,d,b).
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b,
b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab, (c,e)(a,b). In winning set: ab(c,e), ab(c,e). Not in
winning set: abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac,
ceab, (c,e)(a,b).
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd,
be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b). In winning set: abde, abde,
b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed, aebd, be(a,d), (a,d,e)b,
bd(a,e), eb(a,d), e(a,d)b, e(a,d,b).
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d,
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), e(a,d)c, ce(a,d), (c,e)(a,d). In winning set: acde,
acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e),
(c,e)(a,d). Not in winning set: e(a,d)c, ce(a,d)
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd,
b(c,e)d, (d,e)bc, bd(c,e), ebdc, cedb, (c,e)(d,b). In winning set: bcde, bcde, bd(c,e),
b(c,e)d, b(c,e)d, bd(c,e). Not in winning set: cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc,
ebdc, cedb, (c,e)(d,b).

 51

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,d,b)}

Elements not in stage 4 winning matrix, but covered only once:
bd(a,c), c(a,d,b), abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab,
(c,e)(a,b), abed, aebd, be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), e(a,d)c, ce(a,d),
cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc, cedb, (c,e)(d,b)

Step 15

 Potential Element of
Next Stage 4 Winner Stage 5 Winning Set Rating

M(4,6) = (a,d,e)c (a,d,e)cb 1
 (a,d,e)bc 2
 (a,b,d,e)c 1
 b(a,d,e)c 2
 (a,d,e)(b,c) 1

Next 1-coverer in lex order: (a,d,e)cb. This doesn’t work since (a,d,e)b has already been
covered once. Try: (a,b,d,e)c.

Covering Element Covered Elements

(a,b,d,e)c abcd (2), abde (2), acde (2), bcde (2), acbd (2),
 bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2),
 (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (2),
 bd(c,e) (2), c(a,d)b (2), a(c,e)d (2), b(c,e)d (2),
 (c,e)(a,d) (2), (a,d,e)c (2), d(a,c,e) (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:

 52

{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,b,d), (a,b,d,e)c}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd,
bc(a,d), (a,d)bc, bd(a,c), b(a,d)c, c(a,d)b, c(a,d,b), (a,b,d)c. In winning set: abcd, abdc,
bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b. Not in
winning set: bd(a,c), c(a,d,b), (a,b,d)c.
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b,
b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab, (c,e)(a,b), (a,b,e)c. In winning set: ab(c,e),
ab(c,e). Not in winning set: abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc,
b(a,c,e), ebac, ceab, (c,e)(a,b), (a,b,e)c.
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd,
be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), (a,b,d,e). In winning set: abde,
abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed, aebd, be(a,d),
(a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), (a,b,d,e).
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d,
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), e(a,d)c, ce(a,d), (c,e)(a,d), (a,d,e)c. In winning set:
acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d, (c,e)(a,d), (a,d,e)c,
d(a,c,e), (c,e)(a,d), (a,d,e)c. Not in winning set: e(a,d)c, ce(a,d)
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd,
b(c,e)d, (d,e)bc, bd(c,e), ebdc, cedb, (c,e)(d,b), (b,d,e)c. In winning set: bcde, bcde,
bd(c,e), b(c,e)d, b(c,e)d, bd(c,e). Not in winning set: cbde, db(c,e), cdbe, (c,e)bd,
(d,e)bc, ebdc, cedb, (c,e)(d,b), (b,d,e)c.

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,d,b), (a,b,d,e)c}

Elements not in stage 4 winning matrix, but covered only once:
bd(a,c), c(a,d,b), (a,b,d)c, abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc, b(a,c,e),
ebac, ceab, (c,e)(a,b), (a,b,e)c, abed, aebd, be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b),
(a,b,d,e), e(a,d)c, ce(a,d), cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc, cedb, (c,e)(d,b), (b,d,e)c

Step 16

 Potential Element of

 53

Next Stage 4 Winner Stage 5 Winning Set Rating

M(4,7) = d(a,c,e) d(a,c,e)b 1
 d(a,b,c,e) 1
 db(a,c,e) 1
 bd(a,c,e) 2
 (b,d)(a,c,e) 1

Next 1-coverer in lex order: d(a,c,e)b.

Covering Element Covered Elements

d(a,c,e)b abcd (2), abde (2), acde (2), bcde (2), acbd (2),
 bc(a,d) (2), b(a,d)e (2), c(a,d)e (2), ab(c,e) (2),
 (a,d)bc (2), (a,d)be (2), (a,d)(c,e) (2), b(a,d)c (2),
 bd(c,e) (2), c(a,d)b (2), a(c,e)d (2), b(c,e)d (2),
 (c,e)(a,d) (2), (a,d,e)c (2), d(a,c,e) (1)

Check to see that, upon reducing winning set from stage 5 to stage 4, there are no
elements that are not in the stage 4 winning matrix that are covered more than once.

Potential winning set:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,b,d), (a,b,d,e)c, d(a,c,e)b}

(1) Blot out an e: We get abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd,
bc(a,d), (a,d)bc, bd(a,c), b(a,d)c, c(a,d)b, c(a,d,b), (a,b,d)c, d(a,c)b. In winning set:
abcd, abdc, bc(a,d), (a,d)bc, b(a,d)c, c(a,d)b, abcd, acbd, bc(a,d), (a,d)bc, b(a,d)c,
c(a,d)b. Not in winning set: bd(a,c), c(a,d,b), (a,b,d)c, d(a,c)b.
(2) Blot out a d: We get abce, acbe, bcae, ab(c,e), ba(c,e), cabe, ab(c,e), a(c,e)b,
b(c,e)a, (a,e)bc, b(a,c,e), ebac, ceab, (c,e)(a,b), (a,b,e)c, (a,c,e)b. In winning set:
ab(c,e), ab(c,e). Not in winning set: abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a,
(a,e)bc, b(a,c,e), ebac, ceab, (c,e)(a,b), (a,b,e)c, (a,c,e)b.
(3) Blot out a c: We get abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be, abed, aebd,
be(a,d), (a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), (a,b,d,e), d(a,e)b. In winning set:

 54

abde, abde, b(a,d)e, (a,d)be, b(a,d)e, (a,d)be. Not in winning set: abed, aebd, be(a,d),
(a,d,e)b, bd(a,e), eb(a,d), e(a,d)b, e(a,d,b), (a,b,d,e), d(a,e)b.
(4) Blot out a b: We get acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d,
a(c,e)d, (c,e)(a,d), (a,d,e)c, d(a,c,e), e(a,d)c, ce(a,d), (c,e)(a,d), (a,d,e)c, d(a,c,e). In
winning set: acde, acde, c(a,d)e, (a,d)(c,e), (a,d)(c,e), c(a,d)e, a(c,e)d, a(c,e)d,
(c,e)(a,d), (a,d,e)c, d(a,c,e), (c,e)(a,d), (a,d,e)c, d(a,c,e). Not in winning set: e(a,d)c,
ce(a,d)
(5) Blot out an a: We get bcde, cbde, bcde, db(c,e), bd(c,e), cdbe, b(c,e)d, (c,e)bd,
b(c,e)d, (d,e)bc, bd(c,e), ebdc, cedb, (c,e)(d,b), (b,d,e)c, d(c,e)b. In winning set: bcde,
bcde, bd(c,e), b(c,e)d, b(c,e)d, bd(c,e). Not in winning set: cbde, db(c,e), cdbe,
(c,e)bd, (d,e)bc, ebdc, cedb, (c,e)(d,b), (b,d,e)c, d(c,e)b.

Winning set is now:
{abcde, acbde, bc(a,d)e, (a,d)b(c,e), b(a,d)(c,e), c(a,d)be, ab(c,e)d, a(c,e)bd, b(c,e)(a,d),
(a,d,e)bc, bd(a,c,e), eb(a,d)c, ce(a,d)b, (c,e)(a,d,b), (a,b,d,e)c, d(a,c,e)b}

Elements not in stage 4 winning matrix, but covered only once:
bd(a,c), c(a,d,b), (a,b,d)c, d(a,c)b, abce, acbe, bcae, ba(c,e), cabe, a(c,e)b, b(c,e)a, (a,e)bc,
b(a,c,e), ebac, ceab, (c,e)(a,b), (a,b,e)c, (a,c,e)b, abed, aebd, be(a,d), (a,d,e)b, bd(a,e), eb(a,d),
e(a,d)b, e(a,d,b), (a,b,d,e), d(a,e)b, e(a,d)c, ce(a,d), cbde, db(c,e), cdbe, (c,e)bd, (d,e)bc, ebdc,
cedb, (c,e)(d,b), (b,d,e)c, d(c,e)b

This completes the solution for stage 5.

 55

Appendix 3

Proof that Algorithm Works in Every Case

We do a proof by induction. We assume that the algorithm provides solutions
which are correct for stage m-1. Then we prove that the solutions are correct for stage
m. We also know that the algorithm provides correct solutions for stage 3 as presented
earlier.

Step 1:

Any two (m-1)ary solutions will reduce to the same (m-2)ary solution for the m-2
letters they have in common.

Proof

 a) We have assumed that the solutions at stage m-1 are
 correct.
 b) There are m solutions at stage m-1, one for each of m
 combinations of m letters taken m-1 at a time.

 e.g. for m=5, the solutions are

Letter Combination Solution
 a,b,c,d Z11 (abcd), Z21 (abcd), Z31 (abcd)
 a,b,c,e Z12 (abce), Z22 (abce), Z32 (abce)
 a,b,d,e Z13 (abde), Z23 (abde), Z33 (abde)

 a,c,d,e Z14 (acde), Z24 (acde), Z34 (acde)
 b,c,d,e Z15 (bcde), Z25 (bcde), Z35 (bcde)

 where Zi j (wxyz) is a permutation of wxyz.

 c) We know that when a letter is “blotted out” of a
 (m-1)ary solution, the solution reduces to the
 correct (m-2)ary solution.

 56

d) Any two (m-1)ary solutions have m-2 letters in common.
e) Therefore, if the uncommon letter is removed from each of two (m-1)ary
solutions, both will reduce to the same (m-2)ary solution.

Step 2:

For any two (m-1)ary solutions, there are elements in both solutions which have
m-2 letters which are the same and in the same order. In fact and by construction,
there are 2n elements in each solution which have elements with the same letters
in the same order where n is the number of elements in the (m-2)ary solution.

Proof

By construction

e.g. for m=6 and the following case

we have fifth stage solutions as follows:

a,b,c,d,e: abcde, bcdea, eabcd, abdce, cbdea, eacbd, bcead, deabc, acdeb
a,b,c,d,f: abcdf, cdfab, fabcd, abdcf, bacdf, cdfba, dcfab, facbd, fadbc, fbcda

The fourth stage solution for a,b,c,d is abcd.

When we reduce the above solution for a,b,c,d,e we get abcde, eabcd, and
when we reduce the above solution for a,b,c,d,f we get abcdf and fabcd.
Both solutions reduce correctly to abcd.

Step 3:

aRb aRc aRd eRa fRa

 bRc bRd bRe fRb

 cRd cRe cRf

 dRe dRf

 eRf

 57

Any two (m-1)ary elements with (m-2) letters in common and in the same order
can be covered by one m-ary element.

 e.g. the two elements abc(d,e) and abc(d,f) can be covered by abc(d,e,f).

Without loss of generality, let a1a2⋅⋅⋅am-2 be the m-2 letters that each element has in
common. Let’s say that the (m-1)th letter is X for the first element and Y for the
second.

Therefore, not considering ties at the binary level, we have

a1a2⋅⋅⋅ai-1Xai⋅⋅⋅am-2

where ai is a distinct member of the set, {a,b,c⋅⋅⋅}, for
1 < i < m-1, and ai =1 for i=1 and i=m-1.

and a1a2⋅⋅⋅aj-1Yaj⋅⋅⋅am-2

where aj is a distinct member of the set, {a,b,c⋅⋅⋅}, for
1< j < m-1, and aj =1 for j=1 and j=m-1.

We construct the m-ary element by taking the element,
a1a2⋅⋅⋅am-2 , and inserting X between ai-1 and ai and Y between aj-1 and aj as follows:

 a1a2⋅⋅⋅ai-1Xai⋅⋅⋅ aj-1Yaj⋅⋅⋅am-2.

Clearly, if i=j, we may have either

 a1a2⋅⋅⋅ai-1XYai⋅⋅⋅am-2
 or a1a2⋅⋅⋅ai-1YXai⋅⋅⋅am-2.

When ties at the binary level are considered, we have

a1a2⋅⋅⋅(ai-1,X)ai⋅⋅⋅am-2 or a1a2⋅⋅⋅(ai-1,X,ai)⋅⋅⋅am-2 or a1a2⋅⋅⋅ai-1(X,ai)⋅⋅⋅am-2

 58

and
a1a2⋅⋅⋅(aj-1,Y)aj⋅⋅⋅am-2 or a1a2⋅⋅⋅(aj-1,Y,aj)⋅⋅⋅am-2 or a1a2⋅⋅⋅aj-1(Y,aj)⋅⋅⋅am-2

We construct the m-ary element in the same way using parentheses as appropriate.
e.g. for
 a1a2⋅⋅⋅(ai-1,X)ai⋅⋅⋅am-2 and a1a2⋅⋅⋅(aj-1,Y)aj⋅⋅⋅am-2

and for i=j, we have

 a1a2⋅⋅⋅(ai-1,X,Y)aj⋅⋅⋅am-2

The proof is not substantially changed if some of the alternatives are tied:
 e.g. the two elements a(b,c)de and a(b,c)df can be covered by a(b,c)def
and a(b,d)e and a(c,d)e can be covered by a(b,c,d)e.

Step 4:

Each element of the (m-1)ary winning matrix can combine with at least one other
element of the winning matrix in such a way as to form an m-ary element that
covers those elements so combined. There are enough such elements to cover all
elements in the (m-1)ary winning matrix at least once. We will call such m-ary
elements primary elements.

Proof

a) Since any two (m-1)ary rows have to reduce to the same solution at stage m-2
for the m-2 letters they have in common, they will have 2n elements in common
where n is the number of elements in the particular row at stage m-2.

e.g.

 row p: X[b1p]1,X[b1p]2,X[b2p]1,X[b2p]2, ⋅⋅⋅,X[bnp]1,X[bnp]2,X[bn+1p], ⋅⋅⋅ ,X[btp]

 row q: Y[b1q]1,Y[b1q]2,Y[b2q]1,Y[b2q]2, ⋅⋅⋅,Y[bnq]1,Y[bnq]2,Y[bn+1q], ⋅⋅⋅ ,Y[bsq]

 59

 where

row x is that row of the winning matrix whose letter combination does
not include x.
bzp and bzq are (m-1)ary elements such as badc...t. Each element
contains m-1 letters.
bzp= bzq for 1 ≤ z ≤ n.
bzp≠ bzq for n+1 ≤ z ≤ min(t,s), where min(t,s) is the minimum of t and
s.
X and Y are letters and the brackets represent an operator such that
X[AB...P] = XAB...P or AXB...P or ... or AB...XP or AB...PX.
X[bzv]1 represents a different permutation of X and bzv than does X[bzv
]2

b) X[bzp]j and Y[bzq]j can be covered at stage m by X[Y[bip]]
for 1 ≤ z ≤ n.

c) That leaves the elements X[bn+1p], ⋅⋅⋅ ,X[btp] and
Y[bn+1q], ⋅⋅⋅ ,Y[bsq]. By construction these elements cover
(m-2)ary elements in rows other than p and q. So for each of these elements there
exists an element in another row of the (m-1)ary winning matrix such that they
each have m-2 letters in common and in the same order. Therefore, by Step (3)
there is an m-ary element that covers each of these elements and at least one
other.

Example

Let the (m-1)ary winning matrix be

acde cdea eacd
acdf cdfa facd
acef cefa efac
adef defa efad
cdef

 60

The 5-ary set {acdef, cdefa, efacd} consists of primary elements and covers the
4-ary winning matrix exactly once.

Definition: Interference—when there are any two elements in a potential m-ary
winning set that, when reduced to the (m-1)ary level, generate the same element
which is not in the (m-1)ary winning matrix.

Step 5:

Two primary elements cannot interfere with each other.

Proof:

The only way interference can occur is if there are at stage m two elements such
that, when a letter is blotted out, both elements reduce to the same (m-1)ary
element and this element is not in the (m-1)ary winning matrix.

Without loss of generality, let the two m-ary primary elements be

 a1a2⋅⋅⋅ai-1Xai⋅⋅⋅am-2 and a1a2⋅⋅⋅aj-1Xaj⋅⋅⋅am-2

When X is blotted out these both reduce to

 a1a2⋅⋅⋅ am-2

so that there are two such elements at stage m-1. We assume that this element is
not in the winning matrix and prove the assertion that two primary elements
cannot interfere by contradiction.

Because both m-ary elements under consideration are primaries, they were both
formed by merging two elements from the (m-1)ary winning matrix. Let these
elements be

 a1a2⋅⋅⋅ ak-1 ak+1⋅⋅⋅ ai-1Xai⋅⋅⋅am-2, a1a2⋅⋅⋅ al-1 al+1⋅⋅⋅ ai-1Xai⋅⋅⋅am-2

and

 61

 a1a2⋅⋅⋅ ak-1 ak+1⋅⋅⋅ aj-1Xaj⋅⋅⋅am-2, a1a2⋅⋅⋅ al-1 al+1⋅⋅⋅ aj-1Xaj⋅⋅⋅am-2,

respectively.

This implies that at the (m-2) stage there is an element

 a1a2⋅⋅⋅ ak-1 ak+1⋅⋅⋅ ai-1ai⋅⋅⋅am-2

and an element

 a1a2⋅⋅⋅ al-1 al+1⋅⋅⋅ ai-1ai⋅⋅⋅am-2

since there are two of each of them at the (m-1)ary stage when an X is blotted out
and we know, by assumption, that the (m-1)ary solution is correct. Therefore,
there must be an element on row X (where row X is the row in the (m-1)ary
winning matrix which does not contain an X in its letter combination), stage
(m-1) that reduces to

 a1a2⋅⋅⋅ ak-1 ak+1⋅⋅⋅ ai-1ai⋅⋅⋅am-2

when a K is blotted out and to

 a1a2⋅⋅⋅ al-1 al+1⋅⋅⋅ ai-1ai⋅⋅⋅am-2

when an L is blotted out since every row at stage (m-1) must reduce correctly.
The only element for which this is possible is

 a1a2⋅⋅⋅ am-2

and, therefore, this element must be in the (m-1)ary winning matrix which
contradicts the assumption and the assertion is proven.

Example

Consider the following stage 4 winning matrix:

 62

We can form the stage 5 primary abcde from abce and abde and the stage 5
primary bcdea from bcea and bdea, respectively. Then on blotting out an a at
stage 5 we will have two bcdes. Therefore, bcde must be in the stage 4 winning
matrix or else interference would occur. Since at stage 4 there are two bces if an a
is blotted out of row d and two bdes if an a is blotted out of row c, this implies
that there is a bcde on row a.

Step 6:

For each (m-1)ary element there are m permutations of that element and the last
remaining letter. (There are m letters altogether.) One of them is the primary
element. So there are m-1 other permutations. Some of these cover two (m-1)ary
elements and some cover one. We call these other permutations secondaries and
we say they are related to the primary element from which they are derived.

e.g.
 Let
 a1a2⋅⋅⋅ am-1

be the (m-1)ary element. Then we have the possible set of m-ary permutations as
follows:

 {X a1a2⋅⋅⋅ am-1, a1X a2⋅⋅⋅ am-1, ⋅⋅⋅, a1a2⋅⋅⋅ am-1X}

Let
 a1a2⋅⋅⋅ ai-1Xai⋅⋅⋅am-1

 be the primary element which covers two or more
 (m-1)ary elements. One of the covered elements is
 a1a2⋅⋅⋅ am-1 by construction.

 abcd
abce bcea eabc
abde bdea eabd
acde cdea eacd
bcde

 63

Consider

 a1a2⋅⋅⋅ ai-1Xai⋅⋅⋅am-1

If ai or ai-1 is blotted out, the resultant (m-1)ary elements might be in the (m-1)ary
winning matrix. If a1a2⋅⋅⋅ ai-1Xai+1⋅⋅⋅am-1 is in the winning matrix, for example, then the
element a1a2⋅⋅⋅ ai-1aiX⋅⋅⋅am-1 covers two (m-1)ary elements. Every other permutation of X
and a1a2⋅⋅⋅ am-1 results in an element in which the X is out of position from its place in
the primary element and, hence, the resultant element can only be a 1-coverer and only
when the X is blotted out. Therefore, a secondary can cover one or in two cases
possibly two elements.

Step 7:

There are at least two secondaries derived from any given m-ary primary that
will not interfere with any other m-ary primary or secondary.

Proof

Any primary differs from any other primary or secondary by having at least one
letter in a different place. Let’s consider a given primary or secondary element

 a1a2⋅⋅⋅ai-1Xai⋅⋅⋅ aj-1Yaj⋅⋅⋅am-2

Then we consider a second primary element such as

 a1a2⋅⋅⋅ak-1Xak⋅⋅⋅ al-1Yal⋅⋅⋅am-2

in which the letter Y is the one letter definitely in a different position from the
preceding element. This second primary is unrelated to the first element since it
is not derived from it. The letter X “slides” along the second element forming
different permutations at different positions, (0 < k < m, a0 = am-1 =1), and different
related secondaries. In the first element, X is fixed. Now when k=i, there is possible
interference when a Y is blotted out since both elements reduce down to

 64

 a1a2⋅⋅⋅ai-1Xai⋅⋅⋅ aj-1aj⋅⋅⋅am-2.

In all other positions of X (or values of k), there are two letters out of synch for the
two elements so they will not reduce down to the same (m-1)ary element and
hence there will be no interference.

If X and Y are adjacent in the first element

 a1a2⋅⋅⋅ aj-1XYaj⋅⋅⋅am-2

then there are two positions of X which could cause interference as follows

 a1a2⋅⋅⋅ al-1XYal⋅⋅⋅am-2, l=j
and
 a1a2⋅⋅⋅ al-1YXal⋅⋅⋅am-2, l=j

Therefore, there are at most two positions that could cause interference between
a secondary and an unrelated element (primary or secondary).

If there are ties in the first element as follows,

 a1a2⋅⋅⋅(ai-1,X,ai,⋅⋅⋅ aj-1,Y,aj)⋅⋅⋅am-2,

then the second element will produce interference only for those positions inside the
parentheses. All other kinds of ties (not involving X and Y tied together) do not alter the
above analysis.

A secondary cannot interfere with the primary it is derived from since for the
two elements

 a1a2⋅⋅⋅ai-1Xai⋅⋅⋅ am-1

and
 a1a2⋅⋅⋅ak-1Xak⋅⋅⋅ am-1

 65

when aj is blotted out for any value of j except aj=X, the two reduced elements will
not be identical since each X will be in a different position and when X is blotted
out the reduced element

 a1a2⋅⋅⋅ am-2

is in the stage m-1 winning matrix by definition.

Therefore, the assertion is proved true.

Step 8:

There are, therefore, m-2 other secondary elements which are non-interfering not
considering ties for the moment. Choose one of these if necessary (derived from
each primary) to be the second m-ary element to cover each (m-1)ary element.
Each (m-1)ary element is then covered twice in such a way that, when the
solution is reduced from m-ary to (m-1)ary, every other element in the reduced
solution is covered at most once. Therefore, we have proven that, if there is a
correct solution at stage m-1, it is possible to find a correct solution for stage m.
We know all the solutions for m=3. Therefore, a solution exists for m= 4⋅⋅⋅∞.

When ties are considered, the number of possible non-interfering elements

is reduced when both X and Y are in the tie by the number of tied alternatives. At
least, when every alternative is tied, there are still two non-interfering elements
as shown by the following. Assume the first element is as follows:

 (a1,a2,⋅⋅⋅ai-1,X,ai,⋅⋅⋅ aj-1,Y,aj,⋅⋅⋅,am-2)

Then the second element would be non-interfering for the following positions of X:

 X(a1,a2,⋅⋅⋅ai-1,ai,⋅⋅⋅ aj-1,Y,aj,⋅⋅⋅,am-2)
and
 (a1,a2,⋅⋅⋅ai-1,X,ai,⋅⋅⋅ aj-1,Y,aj,⋅⋅⋅,am-2)X

Therefore, there are at least two non-interfering elements. Since we know all the solutions for
m=3, solutions exist for m= 4⋅⋅⋅∞.

 66

 67

References

1. K. J. Arrow, “Social Choice and Individual Values,” John Wiley & Sons Inc., New York, 1951.

2. A. Bergson, “Essays in Normative Economics,” Harvard University Press, Cambridge, Mass.,

1966.

3. D. Black, “The Theory of Committees and Elections,” Cambridge University Press, London,

1958.

4. J-C de Borda, Mémoire sur les élections par scrutin, Mémoires de l'Academie Royale des

sciences année 1781, (1781), 657-65.

5. M. J. A. N. marquis de Condorcet, “Essai sur l'application de l'analyse á la probabilité des

décisions rendues á la pluralité des voix”, Imprimerie Royale, Paris, 1785.

6. Rev. C. L. Dodgson, “A Discussion of the Various Methods of Procedure in Conducting

Elections”, 1873 ; “Suggestions as to the Best Method of Taking Votes, Where More than

Two Issues are to be Voted on,” 1874; “A Method of Taking Votes on More than Two Issues,”

1876.

7. G.-G. Granger, “La mathématique sociale du marquis de Condorcet,” (Éditions Odile Jacob,

Paris, 1989.

8. A. F. MacKay, “Arrow's Theorem,” Yale University Press, 1980.

9. I. McLean and F. Hewitt, “Condorcet,” Edward Elgar, 1994.

10. Y. Murakami, “Logic and Social Choice,” Routledge & Kegan Paul Ltd., London, 1968.

11. E. J. Nanson, Methods of Election, in British Government blue book, Misc. No. 3, Cd. 3501,

1907.

12. W.H. Riker, “Liberalism Against Populism: A Confrontation Between the Theory of

Democracy and the Theory of Social Choice,” W. H. Freeman, San Francisco,1982.

13. J. Riley, “Liberal Utilitarianism,” Cambridge University Press, Cambridge, 1988.

14. N. Schofield, “Social Choice and Democracy,” Springer-Verlag, 1985.

15. A. K. Sen, “Collective Choice and Social Welfare,” Holden-Day, San Francisco, 1970.

16. R. R. Stoll, “Set Theory and Logic,” Dover Publications Inc., New York, 1979.

