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Abstract

In “Social Choice and Individual Values” Arrow (1951) discusses the
possibility of ties for binary orderings. In particular, either xRy, yRx or both
xRy and yRx are possible solutions when m (the number of alternatives) = 2
where R 1s the social “preference or indifference” operator. This is demanded
by the axiom of completeness. Let us write “both xRy and yRx” as {xRy, yRx}.
In the preceding sentence the word “and” is the English connective as
distinguished from the logical and which we write “AND. ” If half the
voter/consumers have xRy and half have yRix (where R; is the individual
“preference or indifference” operator), it would be natural to assume (as one
possibility) that the social ordering is {xRy, yRx} which we define as a tie. By
extension, for three alternatives, if half the voter/consumers have xP;yPiz and
half have yPixPiz, it would be natural to assume (as one possibility) that the
social ordering is the tie {xPyPz, yPxPz}. This reduces correctly to the binary
solutions {xPy, yPx}, xPz and yPz when the appropriate alternative is
removed both at the individual and the social levels. Arrow only considers
ties among alternatives via his social choice function, C(S), and not ties
among orderings. Since he demands orderings as the solutions for a Social
Welfare Function (SWF), it would be more natural to consider ties among
orderings which are also demanded by the axiom of completeness.
Considerations of ties among orderings leads to the possibility of legitimate
SWFs which are presented for m = 3 and which comply with the axioms of

connectivity and transitivity and a strengthened version of Arrow's 5 criteria.

Key Words: social choice, Arrow, Condorcet, voting, paradox of voting,
algorithm, social welfare function, impossibility theorem, general possibility

theorem
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Introduction

In this paper, our goal is not to make an incremental contribution to
the field of social choice, but to make a revolutionary one. This paper is not
about offering a workaround for Arrow’s Impossibility Theorem, but is about
overturning it. In so doing we accept all of Arrow’s framework except that
part which is counterintuitive and flawed. We show that it is possible to have
a Social Welfare Function (SWF) which complies with Arrow’s criteria. The
flawed part of Arrow’s theory has to do with his treatment of ties. Arrow only
considers ties among alternatives, but the range of the SWF consists of
orderings. In a real sense, instead of voting for individual candidates or
alternatives, the voters are voting for orderings. Therefore, ties among
orderings must be considered. When they are, SWFs are possible and

demonstrable (Lawrence, 1998).

We assume alternatives of the form a, b, ¢ ... X, y, z; a preference
relationship, P, an indifference relationship, I and a “preference or
indifference” relationship, R. We assume a set of voter/consumers each of
whom has an ordering over a given set of m alternatives characterized by a
list of preferences; or preferences and indifferences. For example, aP;b Pic
would characterize a preference ordering over an alternative set of three
alternatives by the i™ voter/consumer. al;b Pic would characterize a

preference and indifference ordering over the set.

We assume a SWF which is a mapping from the set of individual
orderings to a social ordering. P, I and R without subscripts represent social
orderings. Therefore, a social ordering would be of the form aPbPc or aPblc or
a set of consistent binary orderings of the form {aRb, bRa, aRc, cRa, bRc,
cRa}, for example. An expresssion of the form aRbRc is meaningless since we
need to know both aRb and bRa, for example, to maintain a 1-1 relationship

between P and I information and R information. We assume a universal SWF



which means that there is a mapping from every possible combination of
individual orderings (the domain) to one of the set of every possible social
ordering (the range). Each element of the range represents a potential social
ordering. Therefore, a social ordering is assigned to each domain point by the

SWEF.

Arrow’s (1951, p. 13) Axiom 1 states: “For all x and y, either xRy or
yRx.” A relation R which satisfies Axiom 1 is said to be complete and
reflexive since xRx. The “or” in the definition is the inclusive or so that “the
word ‘or’ in the statement of Axiom 1 does not exclude the possibility of both

xRy and yRx. ” We write “both xRy and yRx” as {xRy, yRx}.

The choice function, C(S), is defined by Arrow (p. 15) as follows: “C(S)
is the set of all alternatives in S such that, for every y in S, sRy. ” As such it
can be used to specify ties among alternatives if the set, C(S), contains more
than one element. Sen (1970, p. 48) says, “Arrow's impossibility theorem is
precisely a result of demanding social orderings as opposed to choice
functions.” In other words, if the solutions required were simply alternatives,
Arrow’s Impossibility Theorem would not apply. Since Arrow only uses it in
his specification of the Condition of the Independence of Irrelevant
Alternatives, it would have been more natural (and certainly stronger) to
define C(S) as an ordering over a subset instead of the highest ranking
alternative or set of alternatives in a subset. We define an ordering function
herein which strengthens the Condition of Independence of Irrelevant
Alternatives and allows for ties among orderings as well as ties among

alternatives.

The three possible range assignments according to Arrow’s Axiom 1

are xRy, yRx, {xRy, yRx}. Arrow goes on to define xRy AND yRx as xIy and



not yRx as xPy. Arrow assumes a knowledge of P and I. Therefore, he should
have defined R in terms of P and I instead of the other way round. From the
point of view of this paper, we will demonstrate our results in terms of P and

I rather than R.

In the P and I world Axiom 1 can be restated as “For all x and y, either
xPy, yPx, xly, {xPy,yPx}, {xPy, xIy}, {yPx, xIy} or {xPy, yPx, xly}” {xPy, yPx}
might (but does not necessarily have to) be the social ordering if half the
voter/consumers prefer x to y and half prefer y to x. Similarly, {xPy, xIy}
might be the social ordering if half the voter/consumers prefer x to y, and half
are indifferent between x and y. Finally, {xPy, yPx, xIy} might be the social
ordering if a third prefer x to y, a third prefer y to x and a third are
indifferent between y and x. If P and I are primary and R defined in terms of
them, then Axiom 1 can be restated as the following: “For all x and y, either
not yRx, not xRy, xRy AND yRx, {not yRx,not xRy}, {not yRx, xRy AND yRx },
{not xRy, xRy AND yRx } or {not yRx, not xRy, xRy AND yRx }.” Sen (1970, p.
41-46) manages to reconstruct essentially the same proof using P and I and

without using R at all.

The Binary Case

We take as an example the binary case of two alternatives, x and y, and n
voters. This is the typical, traditional voting situation and we assume the majority
voting rule. The individual voters specify either xPjy or yPix. We will not include
indifferences for now. The corresponding social orderings are xPy and yPx. If n
is an even number and n/2 voters specify xPjy while the other n/2 voters specify
yPix, then we clearly have a tie which we indicate {xPy, yPx}. Note that P does
not have to be reflexive for this voting rule to be perfectly rational, but it does
have to be complete "* either xPy, yPx or {xPy, yPx}. These then comprise the
set of range elements that can be considered social orderings. Heuristically and
intuitively, we must provide for the possibility of a tie as a valid range option. We
know from experience that such an outcome is possible. Yet Arrow does not



consider ties in his discussion of the binary case which we will discuss further
below.

If we consider both P and I, then the individual voter/consumers specify
xPjy, yPix or xliy = ylx. The corresponding social orderings are xPy, yPx, xly,
{xPy, yPx}, {xPy, xly}, {yPx, xly}, {xPy, yPx, xly}. xly might heuristically be
appropriate if the majority of voters are indifferent between x and y but not
appropriate if half the voters prefer x to y and half, y to x. For the sake of
completeness, both solutions are available. Note that the domain in the P and |
world includes the domain of the P world. Since | is reflexive and P is not
reflexive, some of the individual orderings are reflexive, namely xliy and only one
social ordering is reflexive: xly. Since various writers (notably Sen) have proved
Arrow’s Impossibility Theorem without using R (which is reflexive) and only using
P and | (which taken together aren’t), we conclude that reflexivity is not
necessary to the analysis and certainly not necessary for rationality.

Let N(x,y) be the number of voters who vote xPjy , and N(y,x) be the
number who vote yPix. The maijority rule which we assumed above connecting
domain and range elements can be more formally stated as follows: If N(x,y) >
N(y,x), the social ordering is xPy. If N(y,x) > N(x,y), the social ordering is yPx. If
N(x,y) = N(y,x) (which can only happen if n is even), the social ordering is a tie
{xPy, yPx}.

Arrow (1951, p. 13-14) claims to treat ties. He asserts: “...Axioms | and Il
do not exclude the possibility that for some distinct [alternatives] x and y, both
xRy and yRx. A strong ordering, on the other hand, is a ranking in which no ties
are possible.” This is not correct. Clearly, ties are possible for the strong ordering
P as discussed above. Arrow is implying here that a social ordering could consist
of the tie set {xRy, yRx}, but he assumes that “both xRy and yRx” is equivalent to
xRy AND yRx which is the same as xly. However, this is not true in general but
only if one defines it this way.

Arrow’s proof that social choice is possible for two alternatives is
questionable because he doesn’t deal with the tie case, N(x,y) = N(y,x),
rigorously. Arrow (1951, p. 46) states: “DEFINITION 9: By the method of majority



decision is meant the social welfare function in which xRy holds if and only if the
number of individuals such that xR; y is at least as great as the number of

individuals such that yR; x.”

Therefore, the case in which N(x,y) = N(y,x) would be decided xRy. But
this violates the principal of neutrality or self-duality that requires every
alternative to be treated in exactly the same manner. Murakami (1968, p. 33)
states: “As long as we are considering the world of two alternatives, self-duality
can be regarded as impartiality or neutrality with respect to alternatives. A self-
dual social decision function has exactly the same structure regarding issue x
against y as it does regarding issue y against x.” Self-duality is a stronger version
of Arrow’s Condition 3 — Citizen’s Sovereignty, but one would think that, since
Arrow provided for the possibility of the tie set, {xRy, yRx}, in Axiom I, it should
be called for in this case. There is no reason to prefer x over y in this situation by
calling for xRy as the solution in the tie case as opposed to yRx. You can’t have
it both ways. If you aren’t going to allow the existence of tie sets as legitimate
social choices, then there is no legitimate social choice in the binary case either
since you would have to assign the case N(x,y) = N(y,x) to either xRy or yRx
which violates neutrality. On the other hand, if tie sets are acceptable, then they
must be admitted as potential solutions for cases such that m > 2, and this
opens the door for legitimate social orderings which contradict Arrow's
Impossibility Theorem.

In showing connectivity Arrow states: “Clearly, always either N(x,y) =
N(y,x) or N(y,x) = N(x,y), so that, for all x and y, xRy or yRx.” This is an incorrect
statement. One could say correctly that ‘either N(x,y) = N(y,x) or N(y,x) > N(x,y)’;
or ‘either N(x,y) > N(y,x) or N(y,x) 2 N(x,y)’; or ‘either N(x,y) > N(y,x) or N(y,x) >
N(x,y) or N(y,x) = N(x,y).” The latter restatement then would suggest the
conclusion that either xRy or yRx or {xRy, yRx} which would be consistent with
Axiom 1. However, Arrow’s definition of majority rule would have to be changed
to allow for the tie case. With these changes one could then go on to prove that
a social ordering is indeed possible for the case of two alternatives, but not
allowing the acceptance of the tie case leads to the conclusion that a social
ordering is impossible for the binary case as well. It is also counterintuitive to
reality!



But Definition 9 has other problems. Let’s say half the voters have xliy and
half have yPix. Then according to Definition 9, xRy. But this is ridiculous!

The Ternary Case — n odd

When the “inclusive or” interpretation of Axiom | is extended to three
alternatives, we would have social ordering solutions, for instance, of the form
{aQ'bQ%c, bQ%aQ*c, cQ%aQ®b }, where Q' is chosen from the set {P,I}. For
example, let us imagine a situation in which there are 3 alternatives and 6
voter/consumers and we exclude | as an operator. There are 6 possible
individual orderings: aPbPic, aPicPib, bP:aPic, bPicPia, cPiaPib, cPibPia. Let us
assume that each of the 6 voter/consumers specifies a different ordering from
among the above six possible orderings. The intuitive and heuristic solution is a
tie among all the possible orderings. Similarly, there are 24 possible orderings for
4 alternatives, and, for the case of 24 voter/consumers, each specifying a
different ordering, common sense would dictate a tie among all the possible
social orderings. A similar case can be made for m=5, 6, ... . These are the
broadest conceivable tie sets, and will be called maximal tie sets. Tie sets
involving less than the total number of orderings are also possible and
demanded by the completeness requirement.

An important thing to keep in mind here is that a tie refers to orderings
and not to alternatives. The choice function C(S) would specify a tie between the
alternatives x and y if xlyRz were the social ordering, for example. We are
considering here ties among the orderings themselves and not just among the
"top slot" of those orderings.

We now proceed to demonstrate solutions which are social orderings for a
specific SWF for the case m = 3 which satisfy a strengthened version of Arrow’s
conditions. Let us assume alternatives x, y and z and n (odd) voter/consumers.
We exclude the indifference operator for now so that each voter must vote xPiy
or yPix. As a consequence of Arrow’s Condition 3, the Independence of
Irrelevant Alternatives, we know that “knowing the social choices made in
pairwise comparisons determines the entire social ordering.” Accordingly, we
consider the social choices of the alternatives two by two. Our SWF is as follows.



If N(x,y) > N(y,x), then xPy. If N(y,x) > N(x,y), then yPx. At the ternary level we
have 8 cases:

Case 1: xPy, xPz, yPz

Case 2: xPy, xPz, zPy

Case 3: xPy, zPx, yPz

Case 4: xPy, zPx, zPy

Case 5: yPx, xPz, yPz

Case 6: yPx, xPz, zPy

Case 7: yPx, zPx, yPz

Case 8: yPx, zPx, zPy

According to the Condorcet (1785) method for determining the outcome of an
election, we consider each of the alternatives in pairs, determine the winner for
each pair and then determine the final social ordering by combining these
results. We use the Condorcet method in our SWF for the above cases in which
it actually produces a result. Therefore, we have the following:

Case Social Ordering
1 xPyPz
xPzPy
zPxPy
yPxPz
yPzPx

o N o B~DN

zPyPx

This leaves only cases 3 and 6. Consider the solution {xPyPz, yPzPx, zPxPy} for
Case 3. We call a reduced ordering or reduced solution an ordering with one or
more alternatives removed. If we consider {xPyPz, yPzPx, zPxPy} and remove
z, we get {xPy, yPx, xPy}. Combining terms we have {2xPy, yPx}. If we choose
the most numerous of xPy and yPx as the solution, we get xPy by 2 to 1 which
we know to be true.

Likewise, if we reduce {xPyPz, yPzPx, zPxPy} by y, we get {xPz, zPx, zPx} or

{xPz, 2zPx}. 2zPx > xPz and we take zPx as the reduced solution which agrees
with the known binary solution. Similarly, if we remove x from the social solution,

10



we have {yPz, yPz, zPy} which yields yPz. Accordingly, our SWF algorithm is as
follows:

1) Choose the Condorcet solution if it exists.

2) If the Condorcet solution doesn’t exist, construct a solution
such that, when the solution is reduced by any single alternative,
the most numerous of the remaining binary relationships is the
same as the binary solution.

Notice that our algorithm will always produce consistent results if the
ternary solution is generated from the binary solution in such a way that there is
a 2 to 1 ratio between the correct binary solution and the incorrect binary solution
and then we take the larger of the two as our reduced solution. We construct our
solutions in this manner in order to be compliant with Arrow’s Condition 3, the
Independence of Irrelevant Alternatives. Satisfying the other Conditions is then
trivial as we shall show. Whether or not such a solution always exists will be
answered affirmatively elsewhere. Here all we need to show is the existence of a
solution for Case 6. Consider the solution
{yPxPz, xPzPy, zPyPx}. Reduction by z yields yPx; by y, xPz; by x, zPy which
agrees with the known binary case and is consistent with the above definition.

Therefore, we have demonstrated a consistent algorithm for the SWF
which yields the same social orderings when reduced from the ternary case to
the binary case as those produced at the binary level directly from the domain.
There is complete consistency of social orderings and not just of alternatives
produced by the choice function. The choice function only produces the top
position in an ordering. We demand consistency over all orderings which can be
produced by reducing a social ordering and this strengthens Arrow's Condition 3.

Arrow (1951, p. 26) states that “...suppose that an election system has
been devised whereby each individual lists all the candidates in order of his
preference and then, by a preassigned procedure, the winning candidate is
derived from these lists. ...Suppose an election is held, with a certain number of
candidates in the field, each individual filing his list of preferences , and then one
of the candidates dies. Surely the social choice should be made by taking each
of the individual's preference lists, blotting out completely the dead candidate's

11



name, and considering only the orderings of the remaining names in going
through the procedure of determining a winner.” This is precisely what we have
done in choosing our SWF. Notice that it is completely consistent with the
solutions for those cases determined by the Condorcet method.

Arrow’s Condition 3 is the following:

‘Let R4,..., Ry and RY,..., R’y be two sets of individual orderings and let
C(S) and C'(S) be the corresponding social choice functions. If, for all individuals
i and all x and y in a given environment S, xRy if and only if
xR'y, then C(S) and C'(S) are the same (independence of irrelevant
alternatives).”

Notice that Arrow only requires consistency in the top position of the
orderings over S. Therefore, assuming Condition 3, if S = {x,y,z}, R =
wQxQyQzQa and R' = aQxQzQyQw, then C(S) = C'(S) = x and Arrow's Condition
3 is satisfied although the social orderings R and R' have different orderings over
the set S. We require the entire social orderings over the set S to be identical as
well thus strengthening Arrow's Condition 3.

Let O(S) be the social ordering function over a set of alternatives S.
O(S)=U where U is the social ordering. Then, let V be the social ordering over a
set of alternatives T with SCT. O(T)=V. Then, xRy in U iff xRy in V.

Now we can restate Condition 3 as the following:

‘Let R4,..., Ry and RY,..., R’y be two sets of individual orderings and let
O(S) and O'(S) be the corresponding social ordering functions. If, for all
individuals i and all x and y in a given environment S, xRy if and only if
xR'iy, then O(S) and O'(S) are the same (independence of irrelevant
alternatives).”

The Ternary Case — n even

When n is even we have a total of 27 cases. We have already considered

the first 8 cases above. For convenience we define {xPy, yPx} as xTy. In addition
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there is one more tie possibility, a three way tie: N(x,y) = N(y,x) = N(y,z) = N(z,y)
= N(x,z) = N(z,x). We write this as {xPy, yPx, yPz, zPy, xPz, zPx} and define this

as xTyTz. Solutions for the remaining cases are shown below.

Case Binary Solutions Ternary Solution

9 xPy, xPz, yTz xPyTz

10: xPy, zPx, yTz {zPxPy, xPyTz, yTzPx}
A1: yPx, xPz, yTz {yPxPz, xPyTz, yTzPx}
A2 yPx, zPx, yTz yTzPx

A3 xPy, xTz, yPz {xPyPz, yPxTz, xTzPy}
14: xPy, xTz, zPy xTzPy

s yPx, xTz, yPz yPxTz

16: yPx, xTz, zPy {zPyPx, yPxTz, xTzPy}
A7 xTy, xPz, yPz xTyPz

18: xTy, xPz, zPy {xPzPy, xTyPz, zPxTy}
19: xTy, zPx, yPz {yPzPx, xTyPz, zPxTy}
20: xTy, zPx, zPy zPxTy

21: xPy, xTz, yTz {xPyTz, xTzPy, xTyTz}
22: yPx, xTz, yTz {yPxTz, yTzPx, xTyTz}
23 xTy, xPz, yTz {xPyTz, xTyPz, xTyTz}
24: xTy, zPx, yTz {zPxTy, yTzRx, xTyTz}
25: xTy, xTz, yPz {yPxTz, xTyPz, xTyTz}
26: xTy, xTz, zPy {zPxTy, xTzRy, xTyTz}
27 xTy, xTz, yTz xTyTz

The P and | World

In the P and I world, we have two relationships to deal with. Let's just
consider 2 alternatives for now. Let N(x,y) be the number of individual
voter/consumers who prefer x to y, and M(x,y) be the number who are

indifferent between x and y. There are then 13 possibilities as follows:

Case 1: N(x,y) > N(y,x) > M(x,y)

13



Case 2:
Case 3:
Case 4:
Case 5:
Case 6:
Case 7:
Case 8:
Case 9:

Case 10:
Case 11:
Case 12:
Case 13:

One possible binary decision rule might the following. If N(x,y) > N(y,x)
and M(x,y), then xPy. If N(y,x) > N(x,y) and M(x,y), then yPx. If M(x,y) > N(x,y)
and N(y,x), then xly. If N(x,y) = N(y,x) > M(x,y), then {xPy, yPx}=xTy. If N(x,y)
M(x,y) > N(y,x), then {xPy, xIy}. If N(y,x) = M(x,y) > N(x,y), then
{yPx, xIy}. If N(x,y) = N(y,x) = M(x,y), then {xPy, yPx, xly}. There would be 7
possible social orderings at the binary level. At the ternary level would be 7°

possible combinations each of which would require a social ordering.

However, the SWF need not make use of every possible range element in
providing a mapping from domain to range. We only need to make sure that
there is at least one set of connections which satisfy Arrow's criteria and axioms.
Accordingly, we only consider the following binary social orderings: xPy, yPx,

xTy = {xPy, yPx}, xly, and the following binary decision rule.

Case 1:

\%
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\%

\V \Y
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\%

N(xy) > N(y,x) > M(x,y)
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Case 2: N(y,x) > N(x,y) > M(x,y) yPx
Case 3: N(x,y) > M(x,y) > N(y,x) xPy
Case 4: N(y,x) > M(x,y) > N(x,y) yPx
Case 5: M(x,y) > N(x,y) > N(y,x) xIy
Case 6: M(x,y) > N(y,x) > N(x,y) xIy
Case 7: N(x,y) > N(y,x) = M(x,y) xPy
Case 8: N(y,x) > N(x,y) = M(x,y) yPx
Case 9: M(x,y) > N(x,y) = N(y,x) xIy
Case 10: N(x,y) = N(y,x) > M(x,y) xTy
Case 11: M(x,y) = N(x,y) > N(y,x) xPy
Case 12: M(x,y) = N(y,x) > N(x,y) yPx
Case 13: M(x,y) = N(x,y) = N(y,x) xTy

At the ternary level we have 64 = 4° cases to consider as follows. We

present the solutions in Appendix 1.

THEOREM For m = 3 and any n there exists a SWF relative to the relations P
and I for which the social orderings consist of either unique rankings or of ties of
at most three orderings.

PROOF By inspection.

Proof that Algorithm Satisfies Arrow's Axioms and Criteria
Axiom I: Connectivity

Either xPy, yPx, xIy or {xPy, yPx} and xIx.
Axiom II: Transitivity

xPy AND yPz imply xPz; xPy AND ylz imply xPz; xIly AND yPz imply
xPz; xly AND ylz imply xIz; xPy AND yTz imply xPz; xTy AND yPz imply xPz;

xTy AND yTz imply xTz; xly AND yTz imply xIz; xTy AND ylz imply xIz.
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Condition 1: Existence of a free triple

Arrow only required that some set of three alternatives be available for
any logical ordering. Our algorithm assigns solutions for every logical ordering

of every individual voter.
Condition 2: Positive Association of Individual and Social Values

This Condition requires that, if every individual voter raises some
candidate in his “preference or indifferenve” list, that candidate must not be
lowered in the social choice. The algorithm considered here satisfies an even
stronger criterion which is, if any individual voter raises a candidate in his
“preference or indifference” list, the “preference or indifference” lists of all other
voters remaining the same, then that candidate must not be lowered in the social

choice.

Since the social choice is based on the choices made on binary pairs, let us
consider only one voter, voter i, and only two candidates, x and y. Let us say
voter i originally had xP;y and then switched to yPix. Let us assume that,
originally, xPy. If the majority of voter/consumers still have xPjy after voter i's
change, then society will still have xPy; if there is now a majority for y over x,
society will have yPx. However, there is the possibility that the change of one
vote will change the social ordering to xTy. If, however, originally xTy, then,
after voter i's change, society will have yPx. Therefore, xPy or xTy can change to

xTy or yPx.

At stage 3, if we originally had xPy, then the social ordering would have
to be one of the following: xPyPz, xPzPy, zPxPy, xPyTz, xITzPy, zTxPy, {xPyPz,
yPzPx, zPxPy}, {zPxPy, xPyTz, yTzPx}, {xPyPz, yPxTz, xTzPy}, {xPyTz, xTzPy,
xTyTz}. If we originally had xTy, then the social ordering would have to be one
of the following: xTyPz, {xPzPy, xTyPz, zPxTy},

{yPzPx, xTyPz, zPxTy}, zPxTy, {xPyTz, xTyPz, xTyTz}, {zPxTy, yTzPx, xTyTz},
{yPxTz, xTyPz, xTyTz}, {zPxTy, xTzPy, xTyTz}, xTyTz.
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After voter i's change the possible solutions if there is a social change are
the following: xPyPz — yPxPz or xTyPz, xPzPy — {yPxPz, xPzPy, zPyPx} or
{xPzPy, xTyPz, zPxTy}, zPxPy — zPyPx or zPxTy, xPyTz — {yPxPz, xPyTz,
yTzPx} or {xPyTz, xTyPz, xTyTz}, xTzPy — {zPyPx, yPxTz, xTzPy or
{zPxTy, xTzPy, xTyTz}, zZTxPy — {zPyPx, yPxTz, xTzPy} or
{zPxTy, xTzPy, xTyTz}, {xPyPz, yPzPx, zPxPy} — yPzPx or {yPzPx, xTyPz,
zPxTy}, {zPxPy, xPyTz, yTzPx} — yTzPx or {zPxTy, yTzPx, xTyTz},

{xPyPz, yPxTz, xTzPy} — yPxTz or {yPxTz, xTyPz, xTyTz},

{xPyTz, xTzPy, xTyTz} — {yPxTz, yTzPx, xTyTz} or xTyTz, xTyPz — yPxPz,
{xPzPy, xTyPz, zPxTy} — {yPxPz, xPzPy, zPyPx},

{yPzPx, xTyPz, zPxTy} — yPzPx, zPxTy — zPyPx, {xPyTz, xTyPz, xTyTz} —
{yPxPz, xPyTz, yTzPx}, {zPxTy, xTzPy, xTyTz} — {zPyPx, yPxTz, xTzPy}, xTyTz
— {yPxTz, yTzPx, xTyTz}.

Inspection of the above relationships shows that, if any individual voter
elevates one alternative in his ordering, then the social ordering will either
remain the same or elevate that alternative in the social ordering, and, therefore,
the assertion is proven.

Condition 3: The Independence of Irrelevant Alternatives

Since by construction if xPy, any third stage solution reduces to xPy *© If
O(x,y) = xPy, then O(x,y) = O'(x,y) for all O and O".

Condition 4: Citizens' Sovereignty

The social choice is imposed if there is some pair of alternatives x and y

such that the social ordering will always be yPx even if, for every individual
voter xPjy. In the algorithm under consideration here, if the majority of voters
prefers x to y, then xPy and vice versa by construction.
Condition 5: The Condition of Nondictatorship

There is no dictator by construction. If the majority prefers or is indifferent

to x over y, then xQy and vice versa.
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The proof considering both P and I is similar to the above.
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Conclusions

Arrow allows for the existence of tied alternatives via his social choice
function, C(S), which selects the most preferred alternative or set of alternatives
from an ordering, but not for the existence of tied social orderings. However, as
Arrow himself acknowledges, the Axiom of Completeness demands that "either
xPy or yPx or both." Similarly, for three alternatives completeness would
demand the consideration of orderings of the form xPyPz, yPzPx or both as well
as combinations of all other possible social orderings. When tie social orderings
are allowed as part of the range of a SWF, it can be shown that a rational SWF
which is compliant with a strengthened version of Arrow's Axioms and Criteria

is possible for the case of three alternatives.

These results can be extended to the general case of an arbitrary number
of alternatives. We have demonstrated elsewhere an algorithm which provides
solutions in the general case and shown that the solutions meet a strengthened
version of Arrow's Axioms and Criteria. We have also proven that the general
algorithm provides solutions for any number of alternatives and

voter/consumers, and, therefore, that social choice is possible.
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Appendix 1

Case
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Binary Solutions

xPy, xPz, yPz
xPy, xPz, zPy
xPy, zPx, yPz
xPy, zPx, zPy
yPx, xPz, yPz
yPx, xPz, zPy
yPx, zPx, yPz
yPx, zPx, zPy
xPy, xPz, ylz
xPy, zPx, ylz
yPx, xPz, ylz
yPx, zPx, ylz
xPy, xIz, yPz
xPy, xIz, zPy
yPx, xIz, yPz
yPx, xIz, zPy
xly, xPz, yPz
xly, xPz, zPy
xly, zPx, yPz
xly, zPx, zPy
xPy, xlz, ylz

yPx, xIz, ylz

xly, xPz, ylz

xly, zPx, ylz

xly, xIz, yPz

xly, xIz, zPy
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Ternarv Solution

xPyPz
xPzPy
{xPyPz, yPzPx, zPxPy}
zPxPy
yPxPz
{yPxPz, xPzPy, zPyPx}
yPzPx
zPxPy
xPylz
{zPxPy, xPylz, ylzPx}
{yPxPz, xPylz, ylzPx}
ylzPx
{xPyPz, yPxlz, xIzPy}
xIzPy
yPxlIz
{zPyPx, yPxlz, xIzPy}
xIyPz
{xPzPy, xIyPz, zPxly}
{yPzPx, xIyPz, zPxly}
zPxly
{xPylz, xIzPy, xlylz}
{yPxlz, ylzPx, xlylz}
{xPylz, xIyPz, xlylz}
{zPxly, yl1zPx, xlylz}
{yPxlz, xlyPz, xlylz}
{zPxly, x1zPy, xIylz}



27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

xly, xIz, ylz

xPy, xPz, yTz
xPy, zPx, yTz
yPx, xPz, yTz
yPx, zPx, yTz
xPy, xTz, yPz
xPy, xTz, zPy
yPx, xTz, yPz
yPx, xTz, zPy
xTy, xPz, yPz
xTy, xPz, zPy
xTy, zPx, yPz
xTy, zPx, zPy
xPy, xTz, yTz
yPx, xTz, yTz
xTy, xPz, yTz
xTy, zPx, yTz
xTy, xTz, yPz
xTy, xTz, zPy
xTy, xTz, yTz
xPy, xIz, yTz
xPy, xTz, ylz
yPx, xlz, yTz
yPx, xTz, ylz
xly, xPz, yTz
xly, zPx, yTz
xTy, xPz, ylz
xTy, zPx, ylz
xly, xTz, yPz
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xlylz
xPyTz
{zPxPy, xPyTz, yTzPx}
{yPxPz, xPyTz, yTzPx}
yTzPx
{xPyPz, yPxTz, xTzPy}
xTzPy
yPxTz
{zPyPx, yPxTz, xTzPy}
xTyPz
{xPzPy, xTyPz, zPxTy}
{yPzPx, xTyPz, zPxTy}
zPxTy
{xPyTz, xTzPy, xTyTz}
{yPxTz, yTzPx, xTyTz}
{xPyTz, xTyPz, xTyTz}
{zPxTy, yTzPx, xTyTz}
{yPxTz, xTyPz, xTyTz}
{zPxTy, xTzPy, xTyTz}
xTyTz
{xPyTz, yTzlx, zIxPy}
{xPylz, yIzTx, zZTxPy}
{yPxlIz, xIzTy, zZTyPx}
{yPxTz, xTzly, zIyPx}
{xPzTy, zTylx, yIxPz}
{zPxly, xIyTz, yTzPx}
{xPzly, zIyTx, yTxPz}
{zPxTy, xTylz, ylzPx}
lyPzTx, zTxly, xIyPz}



56
57
58
59
60
61
62
63
64

xly, xTz, zPy
xTy, xIz, yPz
xTy, xIz, zPy
xly, xIz, yTz
xly, xTz, ylz
xTy, xIz, ylz
xly, xTz, yTz
xTy, xIz, yTz
xTy, xTz, ylz
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{zPylx, yIxTz, xTzPy}

{yPzlx, zIxTy, xTyPz}

{zPyTx, yTxlz, xIzPy}
xIyTz

{xlylz, ylzTx, zZTxly}
xTylz

{xIyTz, yTzTx, zTxly}

{xTyTz, yTzlx, zIxTy}

{xTylz, ylzTx, ZTxTy}
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