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Abstract

In “Social Choice and Individual Values” Arrow (1951) discusses the 

possibility of ties for binary orderings. In particular, either xRy, yRx or both 

xRy and yRx are possible solutions when m (the number of alternatives) = 2 

where R is the social “preference or indifference” operator. This is demanded 

by the axiom of completeness. Let us write “both xRy and yRx” as {xRy, yRx}.

In the preceding sentence the word “and” is the English connective as 

distinguished from the logical and which we write “AND. ” If half the 

voter/consumers have xRiy and half have yRix (where Ri  is the individual 

“preference or indifference” operator), it would be natural to assume (as one 

possibility) that the social ordering is {xRy, yRx} which we define as a tie. By 

extension, for three alternatives, if half the voter/consumers have xPiyPiz and

half have yPixPiz, it would be natural to assume (as one possibility) that the 

social ordering is the tie {xPyPz, yPxPz}. This reduces correctly to the binary 

solutions {xPy, yPx}, xPz and yPz when the appropriate alternative is 

removed both at the individual and the social levels. Arrow only considers 

ties among alternatives via his social choice function, C(S), and not ties 

among orderings. Since he demands orderings as the solutions for a Social 

Welfare Function (SWF), it would be more natural to consider ties among 

orderings which are also demanded by the axiom of completeness. 

Considerations of ties among orderings leads to the possibility of legitimate 

SWFs which are presented for m = 3 and which comply with the axioms of 

connectivity and transitivity and a strengthened version of Arrow's 5 criteria.

Key Words: social choice, Arrow, Condorcet, voting, paradox of voting, 

algorithm, social welfare function, impossibility theorem, general possibility 

theorem
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Introduction

In this paper, our goal is not to make an incremental contribution to 

the field of social choice, but to make a revolutionary one. This paper is not 

about offering a workaround for Arrow’s Impossibility Theorem, but is about 

overturning it. In so doing we accept all of Arrow’s framework except that 

part which is counterintuitive and flawed. We show that it is possible to have

a Social Welfare Function (SWF) which complies with Arrow’s criteria. The 

flawed part of Arrow’s theory has to do with his treatment of ties. Arrow only 

considers ties among alternatives, but the range of the SWF consists of 

orderings. In a real sense, instead of voting for individual candidates or 

alternatives, the voters are voting for orderings. Therefore, ties among 

orderings must be considered. When they are, SWFs are possible and 

demonstrable (Lawrence, 1998).

We assume alternatives of the form a, b, c ... x, y, z; a preference 

relationship, P, an indifference relationship, I and a “preference or 

indifference” relationship, R. We assume a set of voter/consumers each of 

whom has an ordering over a given set of m alternatives characterized by a 

list of preferences; or preferences and indifferences. For example, aPib Pic 

would characterize a preference ordering over an alternative set of three 

alternatives by the ith voter/consumer. aIib Pic would characterize a 

preference and indifference ordering over the set. 

We assume a SWF which is a mapping from the set of individual 

orderings to a social ordering. P, I and R without subscripts represent social 

orderings. Therefore, a social ordering would be of the form aPbPc or aPbIc or

a set of consistent binary orderings of the form {aRb, bRa, aRc, cRa, bRc, 

cRa}, for example. An expresssion of the form aRbRc is meaningless since we 

need to know both aRb and bRa, for example, to maintain a 1-1 relationship 

between P and I information and R information. We assume a universal SWF
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which means that there is a mapping from every possible combination of 

individual orderings (the domain) to one of the set of every possible social 

ordering (the range). Each element of the range represents a potential social 

ordering. Therefore, a social ordering is assigned to each domain point by the 

SWF.

Arrow’s (1951, p. 13) Axiom 1 states: “For all x and y, either xRy or 

yRx.” A relation R which satisfies Axiom 1 is said to be complete and 

reflexive since xRx. The “or” in the definition is the inclusive or so that “the 

word ‘or’ in the statement of Axiom 1 does not exclude the possibility of both 

xRy and yRx. ” We write “both xRy and yRx” as {xRy, yRx}.

The choice function, C(S), is defined by Arrow (p. 15) as follows: “C(S) 

is the set of all alternatives in S such that, for every y in S, sRy. ” As such it 

can be used to specify ties among alternatives if the set, C(S), contains more 

than one element. Sen (1970, p. 48) says, “Arrow's impossibility theorem is 

precisely a result of demanding social orderings as opposed to choice 

functions.” In other words, if the solutions required were simply alternatives,

Arrow’s Impossibility Theorem would not apply. Since Arrow only uses it in 

his specification of the Condition of the Independence of Irrelevant 

Alternatives, it would have been more natural (and certainly stronger) to 

define C(S) as an ordering over a subset instead of the highest ranking 

alternative or set of alternatives in a subset. We define an ordering function 

herein which strengthens the Condition of Independence of Irrelevant 

Alternatives and allows for ties among orderings as well as ties among 

alternatives.

The three possible range assignments according to Arrow’s Axiom 1 

are xRy, yRx, {xRy, yRx}. Arrow goes on to define xRy AND yRx as xIy and 
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not yRx as xPy. Arrow assumes a knowledge of P and I. Therefore, he should 

have defined R in terms of P and I instead of the other way round. From the 

point of view of this paper, we will demonstrate our results in terms of P and 

I rather than R.

In the P and I world Axiom 1 can be restated as “For all x and y, either

xPy, yPx, xIy, {xPy,yPx}, {xPy, xIy}, {yPx, xIy} or {xPy, yPx, xIy}” {xPy, yPx} 

might (but does not necessarily have to) be the social ordering if half the 

voter/consumers prefer x to y and half prefer y to x. Similarly, {xPy, xIy} 

might be the social ordering if half the voter/consumers prefer x to y, and half

are indifferent between x and y. Finally, {xPy, yPx, xIy} might be the social 

ordering if a third prefer x to y, a third prefer y to x and a third are 

indifferent between y and x. If P and I are primary and R defined in terms of 

them, then Axiom 1 can be restated as the following: “For all x and y, either 

not yRx, not xRy, xRy AND yRx, {not yRx,not xRy}, {not yRx, xRy AND yRx },

{not xRy, xRy AND yRx } or {not yRx, not xRy, xRy AND yRx }.” Sen (1970, p.

41-46) manages to reconstruct essentially the same proof using P and I and 

without using R at all.

The Binary Case

We take as an example the binary case of two alternatives, x and y, and n

voters. This is the typical, traditional voting situation and we assume the majority 
voting rule. The individual voters specify either xPiy or yPix. We will not include 

indifferences for now. The corresponding social orderings are xPy and yPx. If n 
is an even number and n/2 voters specify xPiy  while the other n/2 voters specify 

yPix, then we clearly have a tie which we indicate {xPy, yPx}. Note that P does 

not have to be reflexive for this voting rule to be perfectly rational, but it does 

have to be complete i.e. either xPy, yPx or {xPy, yPx}. These then comprise the  

set of range elements that can be considered social orderings. Heuristically and 

intuitively, we must provide for the possibility of a tie as a valid range option. We 

know from experience that such an outcome is possible. Yet Arrow does not 
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consider ties in his discussion of the binary case which we will discuss further 

below.

If we consider both P and I, then the individual voter/consumers specify 
xPiy, yPix or xIiy = yIix.  The corresponding social orderings are xPy, yPx, xIy, 

{xPy, yPx}, {xPy, xIy}, {yPx, xIy}, {xPy, yPx, xIy}. xIy might heuristically be 

appropriate if the majority of voters are indifferent between x and y but not 

appropriate if half the voters prefer x to y and half, y to x. For the sake of 

completeness, both solutions are available. Note that the domain in the P and I 

world includes the domain of the P world. Since I is reflexive and P is not 

reflexive, some of the individual orderings are reflexive, namely xI iy and only one 

social ordering is reflexive: xIy. Since various writers (notably Sen) have proved 

Arrow’s Impossibility Theorem without using R (which is reflexive) and only using 

P and I (which taken together aren’t), we conclude that reflexivity is not 

necessary to the analysis and certainly not necessary for rationality.

Let N(x,y) be the number of voters who vote xPiy , and N(y,x) be the 

number who vote yPix. The majority rule which we assumed above connecting 

domain and range elements can be more formally stated as follows: If N(x,y) > 

N(y,x), the social ordering is xPy. If N(y,x) > N(x,y), the social ordering is yPx. If 

N(x,y) = N(y,x) (which can only happen if n is even), the social ordering is a tie 

{xPy, yPx}.

Arrow (1951, p. 13-14) claims to treat ties. He asserts: “...Axioms I and II 

do not exclude the possibility that for some distinct [alternatives] x and y, both 

xRy and yRx. A strong ordering, on the other hand, is a ranking in which no ties 

are possible.” This is not correct. Clearly, ties are possible for the strong ordering

P as discussed above. Arrow is implying here that a social ordering could consist

of the tie set {xRy, yRx}, but he assumes that “both xRy and yRx” is equivalent to

xRy AND yRx which is the same as xIy. However, this is not true in general but 

only if one defines it this way. 

Arrow’s  proof that social choice is possible for two alternatives is 

questionable because he doesn’t deal with the tie case, N(x,y) = N(y,x), 

rigorously. Arrow (1951, p. 46) states: “DEFINITION 9: By the method of majority
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decision is meant the social welfare function in which xRy holds if and only if the 

number of individuals such that xR i y is at least as great as the number of 

individuals such that yRi x.”

Therefore, the case in which N(x,y) = N(y,x) would be decided xRy. But 

this violates the principal of neutrality or self-duality that requires every 

alternative to be treated in exactly the same manner. Murakami (1968, p. 33) 

states: “As long as we are considering the world of two alternatives, self-duality 

can be regarded as impartiality or neutrality with respect to alternatives. A self-

dual social decision function has exactly the same structure regarding issue x 

against y as it does regarding issue y against x.” Self-duality is a stronger version

of Arrow’s Condition 3 — Citizen’s Sovereignty, but one would think that, since 

Arrow provided for the possibility of the tie set, {xRy, yRx}, in Axiom I, it should 

be called for in this case. There is no reason to prefer x over y in this situation by

calling for xRy as the solution in the tie case as opposed to yRx. You can’t have 

it both ways. If you aren’t going to allow the existence of tie sets as legitimate 

social choices, then there is no legitimate social choice in the binary case either 

since you would have to assign the case N(x,y) = N(y,x) to either xRy or yRx 

which violates neutrality. On the other hand, if tie sets are acceptable, then they 

must be admitted as potential solutions for cases such that m > 2, and this 

opens the door for legitimate social orderings which contradict Arrow's 

Impossibility Theorem.

In showing connectivity Arrow states: “Clearly, always either N(x,y) ≥ 

N(y,x) or N(y,x) ≥ N(x,y), so that, for all x and y, xRy or yRx.” This is an incorrect 

statement. One could say correctly that ‘either N(x,y) ≥ N(y,x) or N(y,x) > N(x,y)’; 

or  ‘either N(x,y) > N(y,x) or N(y,x) ≥ N(x,y)’; or ‘either N(x,y) > N(y,x) or N(y,x) > 

N(x,y) or N(y,x) = N(x,y).’ The latter restatement then would suggest the 

conclusion that either xRy or yRx or {xRy, yRx} which would be consistent with 

Axiom 1. However, Arrow’s definition of majority rule would have to be changed 

to allow for the tie case. With these changes one could then go on to prove that 

a social ordering is indeed possible for the case of two alternatives, but not 

allowing the acceptance of the tie case leads to the conclusion that a social 

ordering is impossible for the binary case as well. It is also counterintuitive to 

reality!
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But Definition 9 has other problems. Let’s say half the voters have xI iy and

half have yPix. Then according to Definition 9, xRy. But this is ridiculous!

The Ternary Case — n odd

When the “inclusive or” interpretation of Axiom I is extended to three 

alternatives, we would have social ordering solutions, for instance, of the form 

{aQ1bQ2c, bQ3aQ4c, cQ5aQ6b }, where Qj is chosen from the set {P,I}. For 

example, let us imagine a situation in which there are 3 alternatives and 6 

voter/consumers and we exclude I as an operator. There are 6 possible 

individual orderings: aPibPic, aPicPib, bPiaPic, bPicPia, cPiaPib, cPibPia. Let us 

assume that each of the 6 voter/consumers specifies a different ordering from 

among the above six possible orderings. The intuitive and heuristic solution is a 

tie among all the possible orderings. Similarly, there are 24 possible orderings for

4 alternatives, and, for the case of 24 voter/consumers, each specifying a 

different ordering, common sense would dictate a tie among all the possible 

social orderings. A similar case can be made for m=5, 6, ... . These are the 

broadest conceivable tie sets, and will be called maximal tie sets. Tie sets 

involving less than the total number of orderings are also possible and 

demanded by the completeness requirement.

An important thing to keep in mind here is that a tie refers to orderings 

and not to alternatives. The choice function C(S) would specify a tie between the

alternatives x and y if xIyRz were the social ordering, for example. We are 

considering here ties among the orderings themselves and not just among the 

"top slot" of those orderings.

We now proceed to demonstrate solutions which are social orderings for a

specific SWF for the case m = 3 which satisfy a strengthened version of Arrow’s 

conditions. Let us assume alternatives x, y and z and n (odd) voter/consumers. 

We exclude the indifference operator for now so that each voter must vote xP iy 

or yPix. As a consequence of Arrow’s Condition 3, the Independence of 

Irrelevant Alternatives, we know that “knowing the social choices made in 

pairwise comparisons determines the entire social ordering.” Accordingly, we 

consider the social choices of the alternatives two by two. Our SWF is as follows.
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If N(x,y) > N(y,x), then xPy. If N(y,x) > N(x,y), then yPx. At the ternary level we 

have 8 cases: 

Case 1: xPy, xPz, yPz

Case 2: xPy, xPz, zPy

Case 3: xPy, zPx, yPz

Case 4: xPy, zPx, zPy

Case 5: yPx, xPz, yPz

Case 6: yPx, xPz, zPy

Case 7: yPx, zPx, yPz

Case 8: yPx, zPx, zPy

According to the Condorcet (1785) method for determining the outcome of an 

election, we consider each of the alternatives in pairs, determine the winner for 

each pair and then determine the final social ordering by combining these 

results. We use the Condorcet method in our SWF for the above cases in which 

it actually produces a result. Therefore, we have the following:

Case Social Ordering

1 xPyPz

2 xPzPy

4 zPxPy

5 yPxPz

7 yPzPx

8 zPyPx

This leaves only cases 3 and 6. Consider the solution {xPyPz, yPzPx, zPxPy} for 

Case 3. We call a reduced ordering or reduced solution an ordering with one or 

more alternatives removed.  If we consider  {xPyPz, yPzPx, zPxPy} and remove 

z, we get {xPy, yPx, xPy}. Combining terms we have {2xPy, yPx}. If we choose 

the most numerous of xPy and yPx as the solution, we get xPy by 2 to 1 which 

we know to be true.

Likewise, if we reduce {xPyPz, yPzPx, zPxPy} by y, we get {xPz, zPx, zPx} or 

{xPz, 2zPx}. 2zPx > xPz and we take zPx as the reduced solution which agrees 

with the known binary solution. Similarly, if we remove x from the social solution, 
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we have {yPz, yPz, zPy} which yields yPz. Accordingly, our SWF algorithm is as 

follows:

1) Choose the Condorcet solution if it exists.

2) If the Condorcet solution doesn’t exist, construct a solution 

such that, when the solution is reduced by any single alternative, 

the most numerous of the remaining binary relationships is the 

same as the binary solution. 

Notice that our algorithm will always produce consistent results if the 

ternary solution is generated from the binary solution in such a way that there is 

a 2 to 1 ratio between the correct binary solution and the incorrect binary solution

and then we take the larger of the two as our reduced solution. We construct our 

solutions in this manner in order to be compliant with Arrow’s Condition 3, the 

Independence of Irrelevant Alternatives. Satisfying the other Conditions is then 

trivial as we shall show. Whether or not such a solution always exists will be 

answered affirmatively elsewhere. Here all we need to show is the existence of a

solution for Case 6. Consider the solution 

{yPxPz, xPzPy, zPyPx}. Reduction by z yields yPx; by y, xPz; by x, zPy which 

agrees with the known binary case and is consistent with the above definition.

Therefore, we have demonstrated a consistent algorithm for the SWF 

which yields the same social orderings when reduced from the ternary case to 

the binary case as those produced at the binary level directly from the domain. 

There is complete consistency of social orderings and not just of alternatives 

produced by the choice function. The choice function only produces the top 

position in an ordering.  We demand consistency over all orderings which can be

produced by reducing a social ordering and this strengthens Arrow's Condition 3.

Arrow (1951, p. 26) states that “...suppose that an election system has 

been devised whereby each individual lists all the candidates in order of his 

preference and then, by a preassigned procedure, the winning candidate is 

derived from these lists. ...Suppose an election is held, with a certain number of 

candidates in the field, each individual filing his list of preferences , and then one

of the candidates dies. Surely the social choice should be made by taking each 

of the individual's preference lists, blotting out completely the dead candidate's 
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name, and considering only the orderings of the remaining names in going 

through the procedure of determining a winner.” This is precisely what we have 

done in choosing our SWF. Notice that it is completely consistent with the 

solutions for those cases determined by the Condorcet method.

Arrow’s Condition 3 is the following:

“Let R1,..., Rn and R'1,..., R'n be two sets of individual orderings and let 

C(S) and C'(S) be the corresponding social choice functions. If, for all individuals 

i and all x and y in a given environment S, xR iy if and only if 

xR'i y, then C(S) and C'(S) are the same (independence of irrelevant 

alternatives).”

Notice that Arrow only requires consistency in the top position of the 

orderings over S. Therefore, assuming Condition 3, if S = {x,y,z}, R = 

wQxQyQzQa and R' = aQxQzQyQw, then C(S) = C'(S) = x and Arrow's Condition

3 is satisfied although the social orderings R and R' have different orderings over

the set S. We require the entire social orderings over the set S to be identical as 

well thus strengthening Arrow's Condition 3. 

Let O(S) be the social ordering function over a set of alternatives S. 

O(S)=U where U is the social ordering. Then, let V be the social ordering over a 

set of alternatives T with ST. O(T)=V. Then,  xRy in U iff xRy in V.

Now we can restate Condition 3 as the following:

“Let R1,..., Rn and R'1,..., R'n be two sets of individual orderings and let 

O(S) and O'(S) be the corresponding social ordering functions. If, for all 

individuals i and all x and y in a given environment S, xR iy if and only if 

xR'i y, then O(S) and O'(S) are the same (independence of irrelevant 

alternatives).”

The Ternary Case — n even

When n is even we have a total of 27 cases. We have already considered

the first 8 cases above. For convenience we define {xPy, yPx} as xTy. In addition
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there is one more tie possibility, a three way tie: N(x,y) = N(y,x) = N(y,z) = N(z,y) 

= N(x,z) = N(z,x). We write this as {xPy, yPx, yPz, zPy, xPz, zPx} and define this 

as xTyTz. Solutions for the remaining cases are shown below.

Case Binary Solutions Ternary Solution

 9: xPy, xPz, yTz xPyTz

 10: xPy, zPx, yTz {zPxPy, xPyTz, yTzPx}

 11: yPx, xPz, yTz {yPxPz, xPyTz, yTzPx}

 12: yPx, zPx, yTz yTzPx

 13: xPy, xTz, yPz {xPyPz, yPxTz, xTzPy}

 14: xPy, xTz, zPy xTzPy

 15: yPx, xTz, yPz yPxTz

 16: yPx, xTz, zPy {zPyPx, yPxTz, xTzPy}

 17: xTy, xPz, yPz xTyPz

 18: xTy, xPz, zPy {xPzPy, xTyPz, zPxTy}

 19: xTy, zPx, yPz {yPzPx, xTyPz, zPxTy}

 20: xTy, zPx, zPy zPxTy

 21: xPy, xTz, yTz {xPyTz, xTzPy, xTyTz}

 22: yPx, xTz, yTz {yPxTz, yTzPx, xTyTz}

 23: xTy, xPz, yTz {xPyTz, xTyPz, xTyTz}

 24: xTy, zPx, yTz {zPxTy, yTzRx, xTyTz}

 25: xTy, xTz, yPz {yPxTz, xTyPz, xTyTz}

 26: xTy, xTz, zPy {zPxTy, xTzRy, xTyTz}

 27: xTy, xTz, yTz xTyTz

The P and I World

In the P and I world, we have two relationships to deal with. Let's just 

consider 2 alternatives for now. Let N(x,y) be the number of individual 

voter/consumers who prefer x to y, and M(x,y) be the number who are 

indifferent between x and y. There are then  13 possibilities as follows:

Case 1 : N(x,y) > N(y,x) > M(x,y)
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Case 2: N(y,x) > N(x,y) > M(x,y)

Case 3: N(x,y) > M(x,y) > N(y,x)

Case 4: N(y,x) > M(x,y) > N(x,y)

Case 5: M(x,y) > N(x,y) > N(y,x)

Case 6: M(x,y) > N(y,x) > N(x,y)

Case 7: N(x,y) > N(y,x) = M(x,y)

Case 8: N(y,x) > N(x,y) = M(x,y)

Case 9: M(x,y) > N(x,y) = N(y,x)

Case 10: N(x,y) = N(y,x) > M(x,y)

Case 11: M(x,y) = N(x,y) > N(y,x)

Case 12: M(x,y) = N(y,x) > N(x,y)

Case 13: M(x,y) = N(x,y) = N(y,x)

One possible binary decision rule might the following. If N(x,y) > N(y,x) 

and M(x,y), then xPy. If N(y,x) > N(x,y) and M(x,y), then yPx. If M(x,y) > N(x,y) 

and N(y,x), then xIy. If N(x,y) = N(y,x) > M(x,y), then {xPy, yPx}=xTy. If N(x,y) =

M(x,y) > N(y,x), then {xPy, xIy}. If N(y,x) = M(x,y) > N(x,y), then 

{yPx, xIy}. If N(x,y) = N(y,x) = M(x,y), then {xPy, yPx, xIy}. There would be 7 

possible social orderings at the binary level. At the ternary level would be 73 

possible combinations each of which would require a social ordering.

However, the SWF need not make use of every possible range element in 

providing a mapping from domain to range. We only need to make sure that 

there is at least one set of connections which satisfy Arrow's criteria and axioms. 

Accordingly, we only consider the following binary social orderings: xPy, yPx, 

xTy = {xPy, yPx}, xIy, and the following binary decision rule.

Social Ordering

Case 1 : N(x,y) > N(y,x) > M(x,y) xPy
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Case 2: N(y,x) > N(x,y) > M(x,y) yPx

Case 3: N(x,y) > M(x,y) > N(y,x) xPy

Case 4: N(y,x) > M(x,y) > N(x,y) yPx

Case 5: M(x,y) > N(x,y) > N(y,x) xIy

Case 6: M(x,y) > N(y,x) > N(x,y) xIy

Case 7: N(x,y) > N(y,x) = M(x,y) xPy

Case 8: N(y,x) > N(x,y) = M(x,y) yPx

Case 9: M(x,y) > N(x,y) = N(y,x) xIy

Case 10: N(x,y) = N(y,x) > M(x,y) xTy

Case 11: M(x,y) = N(x,y) > N(y,x) xPy

Case 12: M(x,y) = N(y,x) > N(x,y) yPx

Case 13: M(x,y) = N(x,y) = N(y,x) xTy

At the ternary level we have 64 = 43 cases to consider as follows. We 

present the solutions in Appendix 1.

THEOREM For m = 3 and any n there exists a SWF relative to the relations P 

and I for which the social orderings consist of either unique rankings or of ties of 

at most three orderings.

PROOF By inspection.

Proof that Algorithm Satisfies Arrow's Axioms and Criteria 

 Axiom I: Connectivity

Either xPy, yPx, xIy or {xPy, yPx} and xIx.

Axiom II: Transitivity

xPy AND yPz imply xPz; xPy AND yIz imply xPz; xIy AND yPz imply 
xPz; xIy AND yIz imply xIz; xPy AND yTz imply xPz; xTy AND yPz imply xPz; 
xTy AND yTz imply xTz; xIy AND yTz imply xIz;  xTy AND yIz imply xIz.
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Condition 1: Existence of a free triple

Arrow only required that some set of three alternatives be available for 
any logical ordering. Our algorithm assigns solutions for every logical ordering 
of every individual voter.

 Condition 2: Positive Association of Individual and Social Values

This Condition requires that, if every individual voter raises some 
candidate in his “preference or indifferenve” list, that candidate must not be 
lowered in the social choice. The algorithm considered here satisfies an even 
stronger criterion which is, if any individual voter raises a candidate in his 
“preference or indifference” list, the “preference or indifference” lists of all other 
voters remaining the same, then that candidate must not be lowered in the social 
choice. 

Since the social choice is based on the choices made on binary pairs, let us 
consider only one voter, voter i,  and only two candidates, x and y. Let us say 
voter i originally had xPiy and then switched to yPix. Let us assume that, 
originally, xPy. If the majority of voter/consumers still have xPjy after voter i's 
change, then society will still have xPy; if there is now a majority for y over x, 
society will have yPx. However, there is the possibility that the change of one 
vote will change the social ordering to xTy. If, however, originally xTy, then, 
after voter i's change, society will have yPx. Therefore, xPy or xTy can change to 
xTy or yPx.

At stage 3, if we originally had xPy, then the social ordering would have 
to be one of the following: xPyPz, xPzPy, zPxPy, xPyTz, xTzPy, zTxPy, {xPyPz, 
yPzPx, zPxPy}, {zPxPy, xPyTz, yTzPx}, {xPyPz, yPxTz, xTzPy}, {xPyTz, xTzPy, 
xTyTz}. If we originally had xTy, then the social ordering would have to be one 
of the following: xTyPz, {xPzPy, xTyPz, zPxTy}, 
{yPzPx, xTyPz, zPxTy}, zPxTy, {xPyTz, xTyPz, xTyTz}, {zPxTy, yTzPx, xTyTz}, 
{yPxTz, xTyPz, xTyTz}, {zPxTy, xTzPy, xTyTz}, xTyTz.

16



After voter i's change the possible solutions if there is a social change are 
the following: xPyPz  yPxPz or xTyPz, xPzPy {yPxPz, xPzPy, zPyPx} or 
{xPzPy, xTyPz, zPxTy}, zPxPy  zPyPx or zPxTy, xPyTz {yPxPz, xPyTz, 
yTzPx} or {xPyTz, xTyPz, xTyTz}, xTzPy {zPyPx, yPxTz, xTzPy or 
{zPxTy, xTzPy, xTyTz}, zTxPy {zPyPx, yPxTz, xTzPy} or 
{zPxTy, xTzPy, xTyTz}, {xPyPz, yPzPx, zPxPy} yPzPx or {yPzPx, xTyPz, 
zPxTy}, {zPxPy, xPyTz, yTzPx} yTzPx or {zPxTy, yTzPx, xTyTz}, 
{xPyPz, yPxTz, xTzPy} yPxTz or {yPxTz, xTyPz, xTyTz},
 {xPyTz, xTzPy, xTyTz} {yPxTz, yTzPx, xTyTz} or xTyTz, xTyPz yPxPz, 
{xPzPy, xTyPz, zPxTy}   {yPxPz, xPzPy, zPyPx}, 
{yPzPx, xTyPz, zPxTy} yPzPx, zPxTy zPyPx, {xPyTz, xTyPz, xTyTz}  
{yPxPz, xPyTz, yTzPx}, {zPxTy, xTzPy, xTyTz} {zPyPx, yPxTz, xTzPy}, xTyTz 
{yPxTz, yTzPx, xTyTz}.

Inspection of the above relationships shows that, if any individual voter 
elevates one alternative in his ordering, then the social ordering will either 
remain the same or elevate that alternative in the social ordering, and, therefore, 
the assertion is proven.

Condition 3: The Independence of Irrelevant Alternatives

Since by construction if xPy, any third stage solution reduces to xPy i.e If 
O(x,y) = xPy, then O(x,y) = O'(x,y) for all O and O'.

Condition 4: Citizens' Sovereignty

The social choice is imposed if there is some pair of alternatives x and y 
such that the social ordering will always be yPx even if, for every individual 
voter xPiy. In the algorithm under consideration here, if the majority of voters 

prefers x to y, then xPy and vice versa by construction.

Condition 5: The Condition of Nondictatorship

There is no dictator by construction. If the majority prefers or is indifferent
to x over y, then xQy and vice versa.
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The proof considering both P and I is similar to the above.
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Conclusions

Arrow allows for the existence of tied alternatives via his social choice 
function, C(S), which selects the most preferred alternative or set of alternatives 
from an ordering, but not for the existence of tied social orderings. However, as 
Arrow himself acknowledges, the Axiom of Completeness demands that "either 
xPy or yPx or both." Similarly, for three alternatives completeness would 
demand the consideration of orderings of the form xPyPz, yPzPx or both as well 
as combinations of all other possible social orderings. When tie social orderings 
are allowed as part of the range of a SWF, it can be shown that a rational SWF 
which is compliant with a strengthened version of Arrow's Axioms and Criteria 
is possible for the case of three alternatives. 

These results can be extended to the general case of an arbitrary number 
of alternatives. We have demonstrated elsewhere an algorithm which provides 
solutions in the general case and shown that the solutions meet a strengthened 
version of Arrow's Axioms and Criteria. We have also proven that the general 
algorithm provides solutions for any number of alternatives and 
voter/consumers, and, therefore, that social choice is possible.
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Appendix 1

Case Binary Solutions Ternary Solution 

1 xPy, xPz, yPz xPyPz

2 xPy, xPz, zPy xPzPy

3 xPy, zPx, yPz {xPyPz, yPzPx, zPxPy}

4 xPy, zPx, zPy zPxPy

5 yPx, xPz, yPz yPxPz

6 yPx, xPz, zPy {yPxPz, xPzPy, zPyPx}

7 yPx, zPx, yPz yPzPx

8 yPx, zPx, zPy zPxPy

9 xPy, xPz, yIz xPyIz

10 xPy, zPx, yIz {zPxPy, xPyIz, yIzPx}

11 yPx, xPz, yIz {yPxPz, xPyIz, yIzPx}

12 yPx, zPx, yIz yIzPx

13 xPy, xIz, yPz {xPyPz, yPxIz, xIzPy}

14 xPy, xIz, zPy xIzPy

15 yPx, xIz, yPz yPxIz

16 yPx, xIz, zPy {zPyPx, yPxIz, xIzPy}

17 xIy, xPz, yPz xIyPz

18 xIy, xPz, zPy {xPzPy, xIyPz, zPxIy}

19 xIy, zPx, yPz {yPzPx, xIyPz, zPxIy}

20 xIy, zPx, zPy zPxIy

21 xPy, xIz, yIz {xPyIz, xIzPy, xIyIz}

22 yPx, xIz, yIz {yPxIz, yIzPx, xIyIz}

23 xIy, xPz, yIz {xPyIz, xIyPz, xIyIz}

24 xIy, zPx, yIz {zPxIy, yIzPx, xIyIz}

25 xIy, xIz, yPz {yPxIz, xIyPz, xIyIz}

26 xIy, xIz, zPy {zPxIy, xIzPy, xIyIz}
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27 xIy, xIz, yIz xIyIz

28 xPy, xPz, yTz xPyTz

29 xPy, zPx, yTz {zPxPy, xPyTz, yTzPx}

30 yPx, xPz, yTz {yPxPz, xPyTz, yTzPx}

31 yPx, zPx, yTz yTzPx

32 xPy, xTz, yPz {xPyPz, yPxTz, xTzPy}

33 xPy, xTz, zPy xTzPy

34 yPx, xTz, yPz yPxTz

35 yPx, xTz, zPy {zPyPx, yPxTz, xTzPy}

36 xTy, xPz, yPz xTyPz

37 xTy, xPz, zPy {xPzPy, xTyPz, zPxTy}

38 xTy, zPx, yPz {yPzPx, xTyPz, zPxTy}

39 xTy, zPx, zPy zPxTy

40 xPy, xTz, yTz {xPyTz, xTzPy, xTyTz}

41 yPx, xTz, yTz {yPxTz, yTzPx, xTyTz}

42 xTy, xPz, yTz {xPyTz, xTyPz, xTyTz}

43 xTy, zPx, yTz {zPxTy, yTzPx, xTyTz}

44 xTy, xTz, yPz {yPxTz, xTyPz, xTyTz}

45 xTy, xTz, zPy {zPxTy, xTzPy, xTyTz}

46 xTy, xTz, yTz xTyTz

47 xPy, xIz, yTz {xPyTz, yTzIx, zIxPy}

48 xPy, xTz, yIz {xPyIz, yIzTx, zTxPy}

49 yPx, xIz, yTz {yPxIz, xIzTy, zTyPx}

50 yPx, xTz, yIz {yPxTz, xTzIy, zIyPx}

51 xIy, xPz, yTz {xPzTy, zTyIx, yIxPz}

52 xIy, zPx, yTz {zPxIy, xIyTz, yTzPx}

53 xTy, xPz, yIz {xPzIy, zIyTx, yTxPz}

54 xTy, zPx, yIz {zPxTy, xTyIz, yIzPx} 

55 xIy, xTz, yPz {yPzTx, zTxIy, xIyPz}
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56 xIy, xTz, zPy {zPyIx, yIxTz, xTzPy}

57 xTy, xIz, yPz {yPzIx, zIxTy, xTyPz}

58 xTy, xIz, zPy {zPyTx, yTxIz, xIzPy}

59 xIy, xIz, yTz xIyTz

60 xIy, xTz, yIz {xIyIz, yIzTx, zTxIy}

61 xTy, xIz, yIz xTyIz

62 xIy, xTz, yTz {xIyTz, yTzTx, zTxIy}

63 xTy, xIz, yTz {xTyTz, yTzIx, zIxTy}

64 xTy, xTz, yIz {xTyIz, yIzTx, zTxTy}

22



References

1. K. J. Arrow, “Social Choice and Individual Values,”  John Wiley & Sons 

Inc., New York, 1951.

2. M. J. A. N. marquis de Condorcet, “Essai sur  l'application de l'analyse á la

probabilité des décisions rendues á la pluralité des voix”, Imprimerie 

Royale, Paris, 1785.

3. J. C. Lawrence, The Possibility of Social Choice, 1998 unpublished.

4. Y. Murakami, “Logic and Social Choice,”  Routledge & Kegan Paul Ltd., 

London, 1968.

5. A. K. Sen, “Collective Choice and Social Welfare,”  Holden-Day, San 

Francisco, 1970.

23


