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Abstract 
 
This paper adds to the drumbeat of those who clamor for the Borda Count (BC) by eliminating 

the stigma of “arbitrariness” previously associated with the BC. It is proven that the BC is 

rational in the sense that, if a candidate dies, the expected value of the social profile is identical 

to the original with the dead candidate’s name removed. Finally, the voting paradox is resolved 

by the BC when the most likely individual profiles are used. The fineness or coarseness of the 

grid on which individuals specify their preference profiles determines the amount of 

information conveyed. Since this grid is traditionally determined by the number of alternatives, 

there is no such thing as an irrelevant alternative. The problem of social choice, in general, can 

be viewed as the transmission of information from multiple sources (the individuals) to one 

receiver (society). Since there are finite information transmission constraints, there will be 

some probability of error, P(e), regarding the placement or ranking of alternatives both in 

individual and social profiles. As individual information is increased, P(e) in the social profile can 

be made to approach zero as closely as desired. 
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Introduction 
 

In 1948, Claude Shannon put forth a Mathematical Theory of Communication which was 

inherently probabilistic. A communication system model was postulated (see Figure 1). It was 

shown that there exists a parameter called channel capacity which determines whether or not 

information can be transmitted at an arbitrarily low probability of error. For transmission rates 

below the channel capacity, arbitrarily good performance can be achieved by proper coding 

while, for information rates above channel capacity, arbitrarily low error rates cannot be 

achieved.  

 

Social choice has been considered for the most part to be deterministic although there 

have been some attempts to take an information theoretic approach. [Heller, Starr and Starrett, 

1986], [Hammond, 1982]. Some have considered the use of lotteries on the alternatives to 

select a winner, [Fishburn, 1984], and some have replaced the individual and social orderings 

themselves by a set of probabilities. [Intriligator, 1973] A game theoretic approach in which the 

objective is to maximize the expected utility over the alternatives has been suggested. [von 

Neumann and Morgenstern, 1944], [Luce and Raiffa, 1958]. The probability of a cycle or social 

intransitivity has been computed. [Williamson and Sargent, 1967]. For Condorcet-like social 

welfare functions (SWFs) this is equivalent to computing a probability of error, P(e).  

 

However, no one has considered the individual preference orderings themselves to be 

probabilistic by virtue of the fact that each individual is allowed to specify only a finite amount 

of information upon which the SWF must then determine a social preference ordering. The 

uncertainty with regard to the individual’s “true” preferences (those that would be manifested 

if infinite information were available) leads to possible errors in the social ordering. We show 

that the P(e) can be made arbitrarily small by increasing the information flow from the 

individuals. The fact that P(e) will always be non-zero with finite information constraints 

coincides with Arrow’s [1963] Impossibility Theorem. Although a SWF that provides a social 

ordering that has even a single error, in the sense that the ordering doesn’t meet Arrow’s 
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conditions and axioms for one pair of alternatives and one domain element (but provides 

correct solutions in every other case), would traditionally be considered not to exist, we take 

the approach of allowing errors in the SWF and then trying to minimize them. 

 

A model of a social choice system is given in Figure 2. If there are m alternatives, the jth 

individual specifies his or her preference ordering as x1j R1x2j R2...x(m-1)j Rm-1xmj , where xij is one of 

the m alternatives and Ri   

(0 < i < m) can be replaced with either P (preference) or I (indifference). The problem  is 

identical to the problem (without indifferences) of placing each of m balls in m slots, one ball to 

a slot, and (with indifferences) to the placing of m balls in m slots without restrictions as to the 

number of balls that can be placed in each slot. When there are indifferences, there will be 

some “open” or “blank” slots i.e. slots with no balls in them. In the traditional model those slots 

are “closed up” or eliminated. In general, there can be m' ≠ m slots. Each individual, ideally, 

should have unlimited freedom of expression when specifying his or her preference orderings 

and not be limited by a number of slots equal to the number of alternatives. However, by 

imposing the restriction that an individual must express his or her preferences in terms of this 

number of slots, the rational individual will feel constrained to select his or her profile by 

projecting each alternative from his or her “true” preferences (expressed in a number of slots 

limited only by his or her “sensitivity”) onto the slots available. These principles are illustrated 

in Figure 3. Other terms for sensitivity used in the literature are finite perception [Fine, 1995] 

and sensibility [Ng, 1975], [Svensson, 1985]. When the open slots are eliminated, the 

information expressed per alternative is not the same when indifferences are involved as when 

there are only strictly preferences since the position of the open slot (which conveys 

information) is unknown. 

 

We can calculate the amount of information expressed by an individual. As defined by 

Shannon, the amount of information is equal to the logarithm to the base 2 of the number of 

states involved. Without indifferences, the first ball (or alternative) can be placed in m ways, 

the second ball in m-1 ways, etc., so that there are m! possible orderings and log2m! bits of 
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information expressed by each individual. With indifferences, each ball can be placed in m ways 

so that there are mm possible orderings or mlog2m bits of information expressed by each 

individual. Therefore, the amount of information expressed is a function of the number of slots 

which, in the traditional model is equal to the number of alternatives. If there are a large 

number of alternatives or slots, each individual can express his or her preferences more 

precisely especially if indifferences are allowed. Figure 4 shows, in general, how a rational 

individual will project his or her “true” preferences by expressing then in various situations in 

which a differing number of slots are available. It can be seen that, if one or more alternatives 

are removed from the original ordering (due to the death of one or more candidates, for 

instance), the rational individual will project his or her “true” preferences onto the number of 

slots appropriate to the number of remaining candidates in order to come up with his or her 

new preference ordering. 

 

Figure 4 exhibits some interesting phenomena. In A the individual’s true preferences are 

expressed in a number of slots down to his or her “sensitivity” level. For purposes of 

simplification, we will assume that the individual’s true preference is concentrated in a spike in 

the middle of the “sensitivity” slot rather than being distributed over the slot. An individual’s 

sensitivity level results in the placing of alternatives on the finest grid possible for that 

individual. In Figure 4 A the individual is able to discriminate among all 9 alternatives so that the 

preference profile contains no indifferences. In B since there are 9 alternatives, they are 

expressed in 9 slots in order to be in accordance with traditional social choice theory. Notice 

that here alternatives d, f and i are indifferent among each other as are a and b. In C 3 

alternatives are removed. Now c and g are indifferent and a is prefered to b. In D a is again 

indifferent to b, and in E a is prefered to b. Thus whether or not an alternative is prefered or 

indifferent to another alternative depends on the structure of the grid. A finer grid may result in 

indifferences being discriminated into preferences, but a coarser grid may cause an indifference 

to become a preference also as shown by the relationship of a and b in Figure 4. 
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From these examples, it can be seen that what have been considered, heretofore, 

irrelevant alternatives, aren’t really irrelevant at all since they determine the grid over which 

individual decisions can be made. It is also concluded that individual data specified for one set 

of alternatives cannot be used with another (larger or smaller) set of alternatives with accuracy 

or certainty. Instead, individuals must be repolled as the number of alternatives changes, or the 

individual profiles must be viewed probabilistically. As the set becomes larger, indifferences 

might become preferences and, as the set becomes smaller, preferences might become 

indifferences and vice versa. However, when deleting alternatives from an alternative set, there 

is no reason why the larger grid and informational base of the original set of alternatives could 

not be used with the reduced set of alternatives since that information is already available. 

 

In Arrow’s model, the information expressed by individuals has been arbitrarily 

constrained by requiring that each individual express his preferences only in terms of binary 

comparisons as required by the condition of irrelevant alternatives, IIA. This has been 

questioned by other writers. [Fishburn, 1971]. It leads to a distortion of the individual data 

since what the individual might have preferred to express as an indifference may now be 

constrained to be a preference. The worst case scenario in which the individual might have 

prefered to express indifference among all alternatives will result in fully discriminated 

preferences as shown in Figure 5. Without assuming transitivity, binary comparisons require 

one bit of information for every possible pair of alternatives from each individual or  

bits for preferences only and  bits for preferences and indifferences. If we 

assume transitivity, we need less information since now we need only compare the alternatives 

in a chain: a with b, b with c etc. Therefore, there are m-1 bits for preferences only and 

 bits for preferences and indifferences. It has been pointed out [Saari, 1995] 

that this represents a dearth of information which leads to Arrow’s Impossibility Theorem. Saari 

states: “Adopting an informational perspective, then, [Arrow’s Theorem and others like it] just 

state that procedures for three or more candidates require more information than just the 

relative rankings of pairs.” [emphasis in the original] Clearly, the binary comparisons lead to an 
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ordering and even a transitive ordering if we assume a rational individual, but that ordering is 

missing the information required to nail down which alternative is in which slot and is, 

therefore, arbitrary. The amount of missing information is precisely 

  

   mlog2m -  bits 

 

If the jth individual specifies his or her preferences in the form  

x1j R1x2j R2...x(m-1)j Rm-1xmj , then breaking this down into binary comparisons is, technically, not 

only throwing away information but a misrepresentation of the individual’s true preferences in 

the first place. While the expression of the individual’s preferences in m slots by projection 

represents a compromise with his or her true preferences, it is a much better compromise than 

that represented by binary comparisons! In fact it is the most congruous method of 

representing true preferences if congruity is defined as the sum of the differences between the 

expressed preferences and the true preferences. There also will be a difference between the 

information gathered if the individual is asked to make the binary comparisons or if the binary 

comparisons are inferred from an m-ary comparison supplied by the individual since, in the first 

case, the individual will be supplying information down to his or her sensitivity level and, in the 

second, the information will be derived from the individual’s projection onto an m-ary grid. The 

amount of information the individual could supply is m'log2m' where m' is related to the 

individual’s sensitivity level whereas the information the individual is asked to supply is mlog2m.  

 

A related point is that, in the traditional model, with no “open” slots allowed, the 

amount of information expressed when there is one indifference is (m-1)log2(m-1) bits since 

there are now m-1 slots. Consequently, the amount of information per alternative is diminished 

when an indifference is expressed. This gives rise to the possibility that different amounts of 

information can be gathered from different individuals, and different amounts of information 

can be gathered regarding different alternatives. In order to avoid this, the following are stated 

as categorical principles: 
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Principle 1: The amount of information collected from each individual shall be the same. 

 

Principle 2: The amount of information collected regarding each alternative shall be the 

same. 

 

These are extensions of anonymity and neutrality, respectively. However, the closing up 

of empty slots when indifferences are involved, strictly speaking, violates both anonymity and 

neutrality. Accordingly, it will be assumed that “open” slots are permitted for the sake of 

analysis in this paper. However, even if open slots are not permitted, this does not essentially 

change the results of this analysis. 

 

Our analysis is ordinal rather than cardinal simply because we are dealing with discrete 

rather than continuous values. There are always a finite number of slots even when we let the 

number of slots get very large. 

 

We do not assume interpersonal comparability, but we do assume intrapersonal 

comparability i.e. each individual can compare his or her own preference profiles for various 

numbers of slots. The individual can project his or her true preference profile onto a grid 

containing the available number of slots. Therefore, alternatives which are ranked indifferently 

on a coarser grid may be ranked preferentially on a finer grid. We assume that there is a 

correspondence among grids of varying coarseness for any particular individual. We assume 

that each individual places each alternative individually and independently on the grid based on 

his sensitivity to that alternative’s place. Thus binary independence is replaced by unary 

independence. 

 

We do not make any assumptions about preference intensity. As shown in Figure 6, 

whether or not the number of slots equals the number of alternatives, certain preference 

relationships can be said to be more intense than others. In our analysis no meaning is given to 

the measurement of this intensity any more than it is in traditional Arrovian analysis. For 
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instance, in Figure 6A there are 6 alternatives and 6 slots. It can be said that a is prefered to b 

more intensely than f is prefered to e simply because there are more slots or places separating 

a and b than there are separating f and e. Also it may be said that d is prefered to f about as 

intensely as c is prefered to b. Similarly, in Figure 6B a is prefered to b more intensely than e is 

prefered to c, and a is prefered to d about as intensely as e is prefered to c. Whether or not 

there are blank or open slots in the one case as opposed to the other does not affect the notion 

of intensity. 

 

Arrow’s BC Example 
 

In light of the previous discussion, Arrow’s verbal comments and example regarding the 

BC must be reconsidered. It has been pointed out by others that this example and IIA, which it 

is claimed to be in violation of, have little in common. Hansson [1973] states: “This [example] 

has little to do with [IIA]. [IIA] says something about what happens when the situation (i.e. the 

individual preferences) changes and the environment is constant. In Arrow’s [BC] example the 

individual preferences stay the same, but the environment is changed.” Other writers [Ray, 

1973] have discussed the “confusion in the literature on these concepts.” 

 

Arrow states: “Suppose an election is held, with a certain number of candidates in the 

field, each individual filing his list of preferences, and then one of the candidates dies. Surely 

the social choice should be made by taking each of the individuals’ preference lists, blotting out 

completely the dead candidate’s name, and considering only the orderings of the remaining 

names in going through the procedure of determining a winner. That is, the choice to be made 

among the set S of surviving candidates should be independent of the preferences of 

individuals not in S. To assume otherwise would be to make the result of the election 

dependent on the obviously accidental circumstance of whether a candidate died before or 

after the date of polling.”  
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In taking each of the individuals’ preference lists, blotting out the dead candidate’s 

name, and considering only the orderings of the remaining names in going through the 

procedure of determining a winner, society is presuming to operate on individual data without 

contacting the individuals involved and is thereby taking away the individuals’ freedom of 

choice. We have shown how a rational individual may change his or her preference ordering 

dependent on the alternatives available but yet totally consistent with rational criteria. 

Therefore, society should not order the individuals’ lists in the way Arrow proposes. Instead, 

the individuals should be repolled according to the coarser grid implied by the lesser number of 

alternatives in order to get accurate individual information relative to that grid. This is the basic 

misconception of IIA. There are no irrelevant alternatives since the number of alternatives 

affects the fineness or coarseness of the grid. If the grid is made invariant with respect to the 

number of alternatives, then the results will be invariant, but this would necessitate having a 

number of slots not necessarily equal to the number of alternatives. If the grid is not invariant, 

as is Arrow’s assumption, individual preference orderings will vary as a function of the number 

of alternatives and hence the social ordering must vary also. The accidental circumstance of 

whether a candidate dies before or after the date of polling will affect the results of the 

election because it will affect the number of slots over which each individual distributes the 

remaining candidates. 

 

If the individuals cannot be repolled when the number of candidates changes, we may 

still be able to extract useful information about the new social profile by viewing the reduced or 

expanded profiles probabilistically. Upping the ante a bit from the traditional Arrovian analysis, 

it is required for the purposes of this paper, that not only should the winner be the same in 

both cases, but the entire social ordering should be the same i.e. the social ordering computed 

from individual orderings with the dead candidate’s name removed should be the same as the 

social ordering computed from individual orderings with the dead candidate’s name included 

and then blotted out of (or removed from) the social ordering. When this is not the case, it will 

be considered that an error has occurred. For instance, if the social ordering were aPbPcPd and 

c dies, the new social ordering recomputed from individual data but without repolling and with 
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c removed should be aPbPd. If, instead, it turned out to be aPbId or aPdPb, for example, it 

could be said that one or two errors, respectively, had occurred. 

 

Consider Arrow’s example which, supposedly, condemns the BC. “In particular, suppose 

that there are three voters and four candidates, x, y, z, and w. Let the weights for the first, 

second, third, and fourth choices be 4, 3, 2, and 1, respectively. Suppose that individuals 1 and 

2 rank the candidates in the order x, y, z, and w, while individual 3 ranks them in the order z, w, 

x, and y. Under the given electoral system, x is chosen. Then, certainly, if y is deleted from the 

ranks of the candidates, the system applied to the remaining candidates should yield the same 

result, especially since, in this case, y is inferior to x according to the tastes of every individual; 

but, if y is in fact deleted, the indicated electoral system would yield a tie between x and z.”  

 

However, under various scenarios (depending on the reformulated preferences of the 

three voters), x can either be prefered to z or be indifferent to z when y is removed. Consider 

Figure 7. The initial assumption is that there are four slots and two voters have xPyPzPw and 

one has zPwPxPy. Now when y is removed, there are three slots and the two voters that had 

xPyPzPw could have either xPzPw or xPzIw. Because of the uncertainty as to the precise 

location of z in its slot when there are four slots, z could be as arbitrarily close to y as possible 

without falling into the slot with y or as arbitrarily close to w as possible without falling into the 

slot with w. From either of these positions, when y is eliminated and the number of slots 

reduced to 3, z could fall into the middle or the bottom slot, respectively. Referring to Figure 7 

again, voter 3’s ordering, zPwPxPy, could be any of the following when y is removed:  

1) zPwIx, 2) zPwPx, 3) zIwPx. Note that there are two different ways of having zIwPx. In this 

case, the BC can be assigned in two different ways depending on which slot is left empty.  

 

If the voters cannot be repolled to determine which slot an alternative will fall into 

when some alternatives are removed (which reconfigures the grid), assumptions can be made 

based on the probability that a specific alternative will wind up in a specific slot. For instance, 

with reference to Figure 8 and assuming that an alternative is equally likely to be anywhere in 
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its slot, for the profile xPiyPizPiw, we can compute the probability that z will wind up in the 

middle slot when y is removed to be 2/3. Therefore, the probability of the individual profile 

xPizPiw is 2/3. Similarly, the probability that z will wind up in the bottom slot when y is removed 

is 1/3, and, consequently, the probability of the profile xPizIiw is 1/3. Note that x always winds 

up in the top slot, and w always winds up in the bottom slot. 

 

The profile zPiwPixPiy is slightly more complicated. w and/or x can wind up in the center 

slot. w can also wind up in the top slot, and x can wind up in the bottom slot. The probability 

that w winds up in the middle slot equals the probability that x winds up in the middle slot 

which is 2/3. The probability that w winds up in the top slot equals the probability that x winds 

up in the bottom slot equals 1/3. Let b signify a “blank” or “open” slot. Therefore the 

probability of the individual profile zPwIxPb equals 4/9. The probability of the individual profile 

zPwPx equals 2/9; the probability of the profile zIwPbPx is 1/9; and the probability of the profile 

zIwPxPb is 2/9. Therefore, the probability of the profile zIwPx is 3/9 = 1/3. 

 

We can compute for each possible combination of profiles for voters 1, 2 and 3 the 

corresponding Borda counts for each of the alternatives and, therefore, the corresponding 

social ordering. Also, we can find the social choice or “top slot” of the social ordering and the 

probability of occurrence of each combination of individual profiles. This information is all 

presented in Appendix 1. As can be seen, out of the total of 16 cases, xPz in 14 and xIz in only 2. 

The probability of error P(e) for xPz is the same as the probability that xIz which is12/81. The 

most likely social profile is xPzPw with a P(c) of 69/81 which accords perfectly with the social 

profile for m=4 with y struck out of the list. We, therefore, pick as winner that profile which 

minimizes the probability of error which is xPzPw. This social profile derived from individual 

profiles with y removed is completely rational in that it is exactly what would be expected by 

simply removing y from the social profile for m=4.  

 

Alternatively, we can find the expected values of the BC for x, x and w, respectively 

when y is removed.  
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 E[BC(x)] for voters 1 and 2 = 3 

 E[BC(w)] for voters 1 and 2 = 1 

 E[BC(z)] for voters 1 and 2 = (2/3)(2) + (1/3)(1) = 5/3 

 E{BC(z)] for voter 3 = 3 

 E[BC(w)] for voter 3 = (1/3)(3) + (2/3)(2) = 7/3 

 E(BC(x)] for voter 3 = (2/3)(2) + (1/3)(1) = 5/3 

 

The expected values of the social BCs equal the summation of the expected values for 

the individual BCs. Therefore, 

  

 Esocial[BC(x)] = (2)(3) + 5/3 = 23/3 

 Esocial[BC(z)] = (2)(5/3) + 3 = 19/3 

 Esocial[BC(w)] = 2 + 7/3 = 13/3 

 

We conclude that the expected values of the BCs for m = 3 are in the same order as the 

BCs for m = 4. We prove that this will be the case in general in Theorem 1. 

 

Theorem 1: Consider a group of n individual preference orderings over m alternatives and the 

corresponding social ordering determined by the BC. If one alternative is removed, the 

expected values of the BCs for the social ordering will be in the same order as the original social 

ordering with the removed alternative blotted out. Hence, the BC is non-arbitrary.  

 

As an example, consider Figure 9. We choose m=6. The Borda counts, then, are 1 for the 

lowest ranked alternative and 6 for the highest ranked. Consider any individual profile such as 

aPbPcPdPePf as shown in 9A. There are 6 slots and each alternative occupies a slot. We assume 

that the “true” location of each alternative is uniformly distributed over its slot as shown in 9B. 

Now if we remove a slot so that there are 5 slots, a will still fall in the top slot and f will still fall 

in the bottom slot. The other alternatives will have some probability of falling in two different 
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slots. For instance, e with a BC of 2 will fall partly into slot 1 and partly into slot 2 when there 

are 5 slots. This is shown in 9C and D. We can compute the probability of e falling into each slot 

as follows. P(e in slot 1) = 0.2. P (e in slot 2) = 0.8. P(d in slot 2) = 0.4.  P(d in slot 3) = 0.6. The 

expected value for the BC for e is E(BC for e) = (0.2)(1) + (0.8)(2) = 1.8. E(BC for d) = (0.4)(2) + 

(0.6)(3) = 2.6. The expected values for the other alternatives are given in Fig. 9E. 

 

Proof: Let m be the original number of alternatives for some individual preference ordering. 

Let j be a variable that denotes the place value  

(1 ≤ j ≤ m) and m-j+1 denote the BC. There are a total of m places or slots. For instance, when 

an alternative is in first place, the BC is m, and when an alternative is in mth place, the BC is 1. 

When one alternative is removed, there is one less slot (1 ≤ j ≤ m-1). The individual will project 

his first (last) place preference for m alternatives onto the first (last)  place slot for m-1 

alternatives since the slots are larger for m-1 than for m. The overlap from the jth slot for m 

slots (2 ≤ j ≤ m-1) onto the (j-1)th slot for m-1 slots is . This represents the probability 

(divided by m) that the alternative in the jth  slot (for m slots) will end up in the (j-1)th  slot (for 

m-1 slots). The probability that the alternative in the jth slot will end up in the jth slot is . 

Therefore, the expected value of the BC for m-1 slots for one individual is  

 E[BCind (j)|(m-1) slots] = , 1 ≤ j ≤ m. 

This is equivalent to  , 1 ≤ j ≤ m.  

This represents a linear transformation: , 0 ≤ k ≤ m-1 

Therefore, the expected values of the BCs for m-1 slots are linear transformations of the values 

of the BCs for m slots. The social BC for the ith alternative (1 ≤ i ≤ m) is the sum of the individual 

BCs for that alternative over all n individuals:  
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BCsocial (ith alt.)|m slots = . Since the expected value of the sum is equal to 

the sum of the expected values, the expected value of the social BC  for the jth alternative with 

one alternative removed is as follows:  

 E[BCsocial (ith alt.)|m-1 slots] = |m-1 slots]. 

 where pk (i) = the number of kth  place votes for the ith alternative over all individuals 

E[BCsocial (ith alt.)|m-1 slots] =  

      

    =  + n 

 

Therefore, the expected value of the social BC for each alternative is the original BC multiplied 

by a constant plus another constant. This is sufficient to show that the ordering of expected 

values of the BCs with one alternative removed is the same as the original ordering of the BCs. 

QED. 

 

Returning to Arrow’s example of the BC, when alternatives are removed, the BC can be 

taken with the original grid since that information is already available. There is no set rule that 

it must be taken with a maximum count (or grid) of 3 when information is available for a grid of 

4. Arrow’s assumption amounts to throwing available information away. Assuming a grid with 4 

slots and y removed, x would have a count of 10, z a count of 6 and w a count of 4 yielding 

xPzPw while the original result would have included a count of 7 for y yielding xPyPzPw and 

striking out y in this profile yields the expected result. 
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One final point regarding Arrow’s example is that the results for 3 alternatives are 

derived relative to the results for 4 alternatives. However, the results for 4 alternatives, 

themselves are also relative and not absolute because they were derived relative to the true 

preference values. In general, when alternatives are removed or added, individual and social 

orderings are subject to change and, therefore, must be considered to be probabilistic. 

 
Paradox of Voting 
 

The paradox of voting occurs in the simplest example when there are three voters 

having, respectively, the following three preference orderings: aP1bP1c, bP2cP2a and cP3aP3b. 

On the binary level, the following relationships are assumed to occur: 2 votes for aPib and 1 for 

bPia yielding aPb, 2 votes for bPic and 1 for cPib yielding bPc and 2 votes for cPia and 1 for aPic 

yielding cPa. There is no single 3-level social ordering that is consistent with the three binary 

orderings in the sense that, when one of the alternatives is blotted out (e.g. when the candidate 

dies), the resulting binary orderings are consistent with the known binary orderings. However, 

in light of the present discussion, if the ternary preference orderings are specified by each 

individual, the binary orderings that each individual would specify are unknown. With reference 

to Figure 10, it can be seen that a specification of aP1bP1c at the ternary level is consistent with 

a specification of aI1b, bP1c, aP1c or aP1b, bI1c, aP1c at the binary level. bP2cP2a is consistent 

with bI2c, cP2a, bP2a or bP2c, cI2a, bP2a at the binary level. cP3aP3b is consistent with cI3a, aP3b, 

cP3b or cP3a, aI3b, cP3b.  

 

We now prove that the BC which yields aIbIc for the social ordering is consistent with 

the most likely social orderings at the binary stage. There are 8 cases in all. Appendix 2 lists the 

cases and the results for each case. No matter which alternative is removed, the probability of a 

tie for m=2 equals 1/2 while the probability that xPy equals 1/4 and the probability that yPx 

also equals 1/4. Therefore, the most likely social ordering for m=2 is aIb with c removed, bIc 

with a removed and aIc with b removed. Therefore, this case is in accordance with Theorem 1 

and the most likely results for the binary case are the same as the result for the ternary case 
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with the appropriate alternative removed from the ternary ordering. The BC yields entirely 

rational and consistent results. 

 

Simple Proof of Arrow’s GPT 
 
Arrow’s General Possibility Theorem (GPT) or Impossibility Theorem as it’s also known 

states that no SWF exists which meets his stated rational and ethical criteria. There have been 

various attempts and comments regarding simplification of the proof. [Feldman, 1974], 

[Stevens, 1976]. It can be shown that this theorem can be proven using only completeness, 

transitivity, universality, Pareto, binary independence, and neutrality. The dictatorship 

condition is not needed  Furthermore, it can be done  in just a few steps. The steps are as 

follows: 

 

1) Let there be m alternatives and n voters. 

2) By universality, a SWF must provide a solution for every possible domain element in 

order for it to exist. Therefore, it must satisfy the domain element m=3, n=2 for which voter 1 

has aP1bP1c, voter 2 has bP2cP2a. 

3) By binary independence and Pareto, bP1c and bP2c produce bPc. 

4) aP1c and cP2a must produce aIc by binary independence and neutrality. 

5) aP1b and bP2a must produce aIb by binary independence and neutrality. 

6) aIbPcIa is intransitive. 

7) Therefore, no SWF exists. QED 

 

From the above analysis, it can be concluded that Arrow’s GPT is a more sophisticated 

and complex restatement of the voting paradox and the dictatorship condition is not needed. 

 

Probability of Error in Social Ordering 
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As has already been established, when the number of alternatives is changed, there may 

be quite rational and predictable changes in the individual preference orderings and hence in 

the social ordering produced by any SWF. Additionally, even if the individuals re-express their 

preferences after new alternatives have been introduced or withdrawn, there is still a 

probability of error due to the discrepancy between the individual’s true preferences and the 

expressed preferences. 

 

Other writers have considered the special case in which n approaches infinity [ 

Chichilnisky, Heal, 1997], [Fishburn, 1970], and the case in which both m and n approach 

infinity. [Grafe, Grafe, 1983], [Pazner, Wesley, 1977]. As m', the number of slots,  gets very 

large, we might expect that the slot assigned to any particular alternative by any particular 

individual will vary only slightly and that the social ordering will become more stable as 

alternatives are added or removed. The probability of error in the SWF should decrease. We 

might expect that the probability of error will decrease with m'  and increase with n. 

 

We next derive an expression for the individual probability of error, Pi (e). We will 

assume that an error occurs in an individual preference profile when, due to grid constraints, an 

individual ranks two alternatives as indifferent when a finer grid would reveal that one is 

preferred to the other. For the purposes of this analysis, we assume that as the grid becomes 

finer, all indifferences will eventually be discriminated into preferences. Also we assume infinite 

sensitivity on the part of the individuals. Let the two alternatives be x and y. Therefore, an error 

occurs when xIiy is expressed and the individual’s true preference is xPiy or yPix. This amounts 

to the individual’s placing x and y in the same slot when a finer grid would reveal that they are 

actually placed in neighboring slots according to the individual’s true preference profile.  

 

Assuming that each alternative is equally likely to be in any slot, the probability of error, 

Pi (e), is the probability that at least two alternatives will fall in the same slot given that there 

are m alternatives and m' slots. Alternatively, the probability that the individual profile is 

correct, Pi (c), is the probability that there is at most one alternative per slot. Let’s assume 
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initially that m' = m. The probability of a particular alternative being in a particular slot is 1/m. 

The probability of m alternatives being in m particular slots is 1/mm. The number of 

permutations of m alternatives is m! Therefore, the probability that m alternatives are in m 

separate slots, Pi (c), is m!/mm.   =0. Therefore, Pi (e) =1. 

 

Now, let m' > m. The probability that one particular alternative is in one particular slot is 

1/m'. The probability that m alternatives are in m particular slots is  1/(m')m. The number of 

permutations of m alternatives in m' slots is m'(m'-1)( m'-2) . . . (m'-m-1). The probability that the 

m alternatives are in any m separate slots is  

  

  Pi (c) =  

 

   and  

 

Therefore, as the number of slots increases, we can force the probability of error 

arbitrarily close to 0. The probability of error over the entire population of n voters would be 

nPi (e), and this too could be limited to any arbitrary value by increasing m'. The probability of 

error for the social preference profile, P(e), assuming no errors introduced from other sources, 

would be equal to nPi (e) which again could be made to approach zero as m'  → ∞. The 

probability of error for the SWF can be made arbitrarily as low as possible by increasing the 

amount of information per alternative from each individual. A more in depth analysis could take 

into account finite sensitivity. In this case, it would seem that the value of m' necessary to 

achieve any particular P(e) would be significantly less. 

 

Beyond the BC — New Directions 
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The BC will always result in one and exactly one social ordering, and this is one of its 

virtues. However, since the final positions of the alternatives in the social profile represent an 

average of their positions over all the individuals, widely varying individual profiles may result in 

the same social profile produced by the BC. Also, the BC in and of itself does not embody any 

particular ethical criteria. It may be desirable to use another SWF which is ethically based and 

which produces initially a set of possible SWFs that can be winnowed further according to 

another set of criteria. 

 

Consider the SWF that measures the mismatch between each possible social profile and 

the aggregated individual profiles. By measuring the “distance” between each alternative in the 

“trial” social profile and the individual profiles and summing, we get a measure of the mismatch 

between the “trial” profile and the aggregated individual profiles. Consider the trial social 

profile bac and the individual profile abc. The “distance” from a in the individual profile to a in 

the trial profile is 1. Similarly for b. Since c is in the same position in both profiles, the distance 

is 0. Therefore, the total mismatch is 2. The mismatch for a trial profile abc would be zero and 

for cba, 4. By summing over the entire population a measure of the mismatch for each possible 

trial social profile can be obtained. Then, that set of profiles which minimizes the mismatch can 

be selected for further consideration. The next criterion that might be applied would be to 

select that subset of profiles that maximized some equality criterion, for example. Finally, this 

set can be winnowed further by applying a Rawlsian criterion [Rawls, 1971] such as selecting 

the subset which minimizes the mismatch between the trial SWF and the least well-off 

individual. This criterion can be reapplied until the trial set is reduced to one social profile. 

 

Summary and Conclusions 
 

We have shown that the BC is not arbitrary when considered from a probabilistic point 

of view but, au contraire, extremely rational. We have proven that the expected value of the 

social profile produced by the BC when one alternative is removed is identical to the original 

profile with the removed alternative blotted out. A consequence of the proven rationality of 
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the BC is the resolution of the voting paradox. It is shown that the BC for the social profile 

which is aIbIc is completely consistent with the most likely social profiles at the binary level 

which are aIb, aIc and bIc, respectively. Also, a simplified proof of Arrow’s GPT is provided. 

 

We have shown that a rational individual will order alternatives with regard to the 

number of slots that are available by projection from his or her true preferences rather than by 

binary comparisons. When the grid is relatively coarse, (few slots available) some alternatives 

may fall into the same slot whereas, when the grid is relatively fine (many slots available), the 

individual is able to discriminate among alternatives that were previously classified as 

indifferent. We assume that the individual’s true preference profile is placed on a much finer 

grid than the one society makes available for the individual’s input. The fineness of the 

individual’s true preference grid is limited only by the ability to discriminate or sensitivity. In the 

traditional model, the number of slots equals the number of alternatives, but more information 

can be provided if the number of slots is increased beyond the number of alternatives.  

 

The source of error in the social profile is linked to the finite amount of information that 

can be gathered from each individual and due to the necessary uncertainty involved in any 

individual preference profile that can be considered by society due to limited information 

gathering and processing resources. This error is manifested in a preference profile which 

diverges in one or more places from the profile that would result if infinite information were 

available. It can be driven arbitrarily close to zero providing that society is willing to pay the cost 

of collecting and processing the additional information. In the real world, we anticipate that this 

information will eventually be collected via the internet and processed via computers. 

Therefore, there will be an associated cost per bit. In the final analysis, it comes down to how 

much precision society deems necessary vs. the price society is willing to pay for it. 

 

Finally, we have shown that the same result that applies to the communication of 

information in communication systems applies to the aggregation of preferences in social 

choice: there will always be some probability of erroneous results when the information 
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gathered is finite, but that error can be made as low as desired by increasing the amount of 

information collected.
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